- •Содержание
- •Лабораторная работа №1. Амплитудная модуляция и синхронное детектирование ам сигнала Теоретическая часть.
- •Эксперимент.
- •Часть 1. Получение dsbsc-сигнала
- •Часть 2. Суммирование dsbsc и несущего колебания
- •Часть 3. Настройка схемы для получения ам-сигнала
- •Часть 4. Синхронное детектирование ам сигналов
- •Лабораторная работа №2. Влияние шума в амплитудной модуляции Теоретические основы
- •Эксперимент
- •Часть 1. Построение ам модулятора.
- •Часть 2. Построение канала с шумом и диодного детектора.
- •Часть 3. Влияние белого шума на диодный детектор.
- •Часть 4. Построение канала с шумом и синхронного детектора
- •Часть 5. Влияние белого шума на синхронный детектор
- •Лабораторная работа №3. Импульсно-кодовая модуляция и временное разделение канала Теоретические основы
- •Эксперимент
- •Часть 1. Построение схемы кодирования и декодирования икм
- •Часть 2. Временное разделение канала
- •Часть 3. Построение полной двухканальной системы икм с врк
- •Лабораторная работа №4. Модулятор Армстронга Теоретическая часть
- •Эксперимент
- •Часть 1. Получение dsbsc сигнала
- •Часть 2. Сложение dsbsc сигнала с несущим колебанием
- •Часть 3. Настройка сдвига фазы с помощью осциллографа.
- •Часть 4. Настройка сдвига фазы «на слух»
- •Часть 5. Преобразование сигнала в фазово-модулированный.
- •Лабораторная работа №5. Фазовое разделение каналов (pdm) Теоретическая часть
- •Эксперимент.
- •Часть 1. Получение фазово-разнесенных сигналов (pdm)
- •Часть 2. Рассмотрение ширины спектра pdm сигнала
- •Часть 3. Использование фазовой дискриминации для демодуляции pdm сигнала
- •Лабораторная работа №6. Широтно-импульсная модуляция и демодуляция Теоретическая часть.
- •Эксперимент
- •Часть 1. Получение пилообразного напряжения
- •Часть 2. Широтно-импульсная модуляция сигнала, представленного постоянным напряжением
- •Часть 3. Использование аналогового сообщения в качестве входного сигнала
- •Часть 4. Восстановление аналогового сигнала
- •Часть 5. Последствия несоблюдения теоремы Котельникова
- •Лабораторная работа №7. Смещение и инверсия сообщений Теоретическая часть.
- •Эксперимент
- •Часть 1. Построение скремблера
- •Часть 2. Настройка скремблера
- •Часть 3. Прослушивание инвертированного сигнала
- •Лабораторная работа №8. Восстановление несущей с помощью фазовой автоподстройки частоты Теоретическая часть.
- •Эксперимент
- •Часть 1. Получение 100% модулированного сигнала
- •Часть 2. Восстановление несущей с помощью фапч
- •Лабораторная работа №9. Отношение сигнал-шум и глаз-диаграммы Теоретическая часть.
- •Эксперимент
- •Часть 1. Добавление шума к сигналу
- •Часть 2. Ограничение ширины полосы частот сигнала и шума
- •Часть 3. Определение отношения сигнал-шум
- •Часть 4. Глаз-диаграммы
- •Лабораторная работа №10.
- •Теоретическая часть.
- •Эксперимент
- •Часть 1. Сборка схемы кодирования и декодирования икм
- •Часть 3. Измерение sndr икм-системы в целом
- •Лабораторная работа №11.
- •Теоретическая часть.
- •Эксперимент
- •Часть 1. Получение аМн сигнала
- •Часть 2. Демодуляция аМн сигнала с помощью синхронного детектора
- •Часть 3. Синхронизация несущих
- •Лабораторная работа №12. Частотная манипуляция и демодуляция Теоретическая часть.
- •Эксперимент
- •Часть 1. Настройка сигналов управления переключением
- •Часть 2. Использование метода переключений для получения чМн сигнала
- •Часть 3. Спектр чМн сигнала
- •Часть 4. Демодуляция чМн сигнала с помощью фильтров и диодного детектора
- •Лабораторная работа №13.
- •Теоретическая часть.
- •Эксперимент
- •Часть 1. Получение чМн сигнала и рассмотрение его спектра
- •Часть 2. Получение gfsk сигнала и сравнение спектральных композиций чМн и gfsk сигналов.
- •Часть 3. Влияние ограничения ширины спектра цифрового сигнала на восстанавливаемый сигнал
- •Лабораторная работа №14. Спектр псевдошумовых последовательностей и генерация шума Теоретическая часть.
- •Эксперимент
- •Часть 1. Рассмотрение пш последовательности во временной области
- •Часть 2. Рассмотрение пш последовательностей в частотной области
- •Часть 3. Использование пш последовательностей для генерации шума
- •Лабораторная работа №15. Перекодирование Теоретическая часть.
- •Эксперимент
- •Часть 3. Восстановление частоты битов.
- •Список использованных источников
Эксперимент
Часть 1. Рассмотрение пш последовательности во временной области
1. Соберите схему, как показано на рисунке 14.4.
Рисунок 14.4
Эту схему можно представить блок-схемой на рисунке 5. С выхода 2kHz Digital модуля Master Signal берется тактовая частота для модуля Sequence Generator. С выхода X модуля Sequence Generator берется тридцатиоднобитная цифровая последовательность. Выход SYNC подает импульс, соответствующий первому биту последовательности при каждом ее повторении.
Рисунок 14.5
2. Запустите осциллограф NI ELVIS II Oscilloscope VI и настройте его:
Timebase 2ms/div
Trigger Type Digital
CH 1 Vertical Position -5V
3. Рассчитайте длительность каждого бита последовательности X с учетом тактовой частоты. Учтите, что на самом деле частоте 2кГц модуля Master Signal соответствует частота 2,083кГц. Затем рассчитайте длительность всей 31-битной последовательности.
4. С помощью осциллографа проверьте свои ответы.
5. Измените схему, как показано на рисунке 14.6.
Рисунок 14.6
Блок-схема на рисунке 14.7.
Рисунок 14.7
Теперь осциллограф одновременно показывает две последовательности, при этом вторая последовательность отображается не четко. Это происходит, потому что осциллограф синхронизируется с выходом SYNC, т.е. каждый 31 бит. А так как последовательность Y имеет длину 255 бит, и 255 не делится на 31 без остатка, то дисплей осциллографа не успевает обновляться достаточно часто для отображения 255-битной последовательности.
Часть 2. Рассмотрение пш последовательностей в частотной области
1. Остановите и сверните осциллограф.
2. Запустите и настройте NI ELVIS II Dynamic Signal Analyzer VI.
Input Settings:
Source Channel Scope CH0; Voltage Range ±10V
FFT Settings:
Frequency Span 40000; Resolution 400; Window 7 Term B-Harris
Averaging:
Mode RMS; Weighting Exponential; # of averages 3
Trigger Settings:
Type Digital
Frequency Display:
Units dB; Mode RMS; Scale Auto.
Правильно настроенное окно должно выглядеть так:
Рисунок 14.8
3. Определите частоту первого нуля для 31-битной последовательности. После этого сравните свои расчеты с результатом, полученным на экране анализатора сигналов.
4. Сколько гармоник теоретически присутствует в одной доле спектра последовательности X? Почему мы не можем видеть каждую из них? Чтобы проверить свой ответ, установите Frequency Span на 2,500кГц. Как только экран обновится, вы должны увидеть набор отдельных гармоник первой доли сигнала. Посчитайте точное количество гармоник от 0 до 2,083кГц и сравните со своими расчетами.
5. Заново настройте Dynamic Signal Analyzer:
Input Settings:
Source Channel Scope CH0
FFT Settings:
Frequency Span 40000
Теперь мы рассматриваем последовательность, состоящую из 255 бит.
5. Повторите пункты 3 и 4 для более длинной последовательности. Можете ли вы на экране анализатора сигналов различить все гармоники одной доли спектра последовательности? Уменьшайте Frequency Span ниже 2,500кГц и попытайтесь рассмотреть отдельные гармоники. У какой из последовательностей плотность гармоник выше?
