
- •Билет №1
- •1. Развитие электроэнергетики в Республике Беларусь. Основные проблемы развития современной техники эоп и ту.
- •2. Режимы нейтрали сети.
- •3. Способы включения электромагнитного реле на ток и напряжение сети.
- •3.2.1. Токовые реле
- •3.2.2. Реле напряжения
- •3.2.3. Промежуточные реле
- •3.2.4. Указательные реле
- •3.2.5. Реле времени
- •Билет №2
- •1. Классификация электроприемников. Понятие электронагрузки элементов в электрических системах. Средняя получасовая нагрузка.
- •2. Общие принципы построения схем электроснабжения. Схемы сетей с напряжением выше 1000 в. Схемы сетей на напряжения свыше 1000 в.
- •3. Индукционные, поляризованные, магнитоэлектрические реле.
- •Билет №3
- •1. Полупроводниковые приборы в схемах релейной защиты. Органы сравнения в полупроводниковых приборах.
- •2. Графики электрических нагрузок. Определение средних нагрузок.
- •3. Защита от грозовых напряжений.
- •Билет № 4
- •1. Методы определения расчетных нагрузок
- •2. Факторы, определяющие конструктивные исполнения линий
- •3. Распредустройства. Открытая и закрытая установка трансформаторов
- •Билет № 5
- •1. Определение пиковых нагрузок у машин контактной сварки.
- •2. Марки проводов и кабелей. Область их применения. Выбор их по нагреву.
- •Область применения кабелей и проводов
- •3. Требования к трансформаторным помещениям
- •Билет №6
- •1. Развитие электроэнергетики в Республике Беларусь. Основные проблемы развития современной техники эоп и ту.
- •2. Выбор проводов и шин по экономической плотности тока. Расположение и расцветка фаз в ру.
- •3. Основные понятия о защите. Защита плавкими предохранителями и автоматическими выключателями.
- •Билет №7
- •1. Применение эвм при расчете электрических нагрузок.
- •2. Основные соотношения между величинами тока короткого замыкания.
- •3. Релейная защита максимального тока. Общие вопросы.
- •Билет №8
- •1. Определение потерь мощности и электроэнергии в линиях, трансформаторах, автотрансформаторах.
- •2. Определение параметров и выбор схемы цепи к.З.
- •3. Токовая дифференциальная защита.
- •Билет №9
- •1. Определение потерь мощности и электроэнергии в реакторах, шинопроводах. Потери напряжения. Снижение потерь электроэнергии в установках предприятий и транспорта.
- •2. Расчет токов к.З. В относительных единицах.
- •3. Направленная защита.
- •Билет № 10
- •Потребители реактивной мощности в установках предприятий и транспорта.
- •Расчет токов к.З. В именованных единицах.
- •Защита сетей от замыкания на землю.
- •Билет № 11
- •Способы уменьшения потребления реактивной мощности.
- •Токи к.З. От бесконечно мощных источников.
- •Защита минимального напряжения.
- •Билет №12
- •1. Качество электроэнергии. Влияние отклонения напряжения на работу электроприемников.
- •2. Токи к.З. От источников конечной мощности.
- •3. Защита от низкого напряжения.
- •Билет №13
- •1. Определения убытка при отклонениях напряжения на работу электроприемников.
- •2. Расчет токов к.З. По расчетным кривым. Ударный ток к.З. Ударный ток короткого замыкания
- •Применение расчетных кривых
- •3. Защита силовых трансформаторов и генераторов.
- •Билет №14
- •1. Зависимость потерь напряжения от соотношений активной и реактивной мощностей электроприемников.
- •2. Расчет токов к.З. В установках напряжением до 1000 в.
- •3. Заземляющие устройства.
- •Билет №15
- •1. Надежность электроснабжения как фактор качества электроэнергии. Влияние условий надежности на создание систем электроснабжения предприятий и транспортных установок.
- •2. Тепловое действие тока к.З.
- •3 Требования к заземляющим устройствам.
- •Билет №16
- •1. Определение ущерба от нарушения электроснабжения.
- •2. Электродинамические действия тока к.З.
- •3. Расчет заземляющего устройства.
- •Билет № 17
- •1. Обеспечение постоянства напряжения у электроприемников.
- •Регулирование токов к.З.
- •3. Защитное отключение.
- •Билет № 18
- •1.Выбор средств регулирования (регулировочные устройства).
- •2. Расчет осветительных сетей
- •Троллейные линии
- •3.Защита подземных сооружений от коррозии вследствие блуждающих токов.
- •Билет №19
- •1.Тэо применения регулировочных устройств в сетях предприятий.
- •2.Назначение и схемы тп. Трансформаторы и схемы соединений. Необходимые условия при параллельном включении трансформаторов.
- •3.Меры защиты от коррозии (блуждающих токов).
- •Билет №20
- •1.Источники активной электроэнергии в рб и за рубежом. Экологически чисты производства.
- •2.Выбор числа и мощности трансформаторов.
- •3.Устройства управления, измерения и сигнализации. Основная аппаратура цепей управления и сигнализации.
- •Билет №21
- •1.Источники рм. Особенности некоторых компенсационных устройств.
- •2.Выбор схем и напряжений тп.
- •3.Дистанционое управление вв. Автоматическое повторное включение (апв).
- •Билет № 22
- •1. Основные принципы и расчеты компенсации рм.
- •2. Схемы электросоединений гпп.
- •3. Автоматическое включение резерва (авр).
- •Принцип действия Автоматический ввода резерва (авр)
- •Билет № 23
- •1. Выбор средств компенсации рм.
- •2. Схемы цеховых тп.
- •3. Автоматическая разрузка по частоте (ачр) и по току (арт).
- •Ачр I (быстродействующая ачр):
- •Билет № 24
- •Схемы промпредприятий и размещения конденсаторных устройств.
- •Основные требования к выключателям переменного тока. Типы вв.
- •3. Регулирование процессов самозапуска
- •Билет №25
- •Компенсация рм при наличии вентильных преобразователей.
- •Разъединители, отделители, короткозамыкатели, вн, пп.
- •Управление вв на оперативном переменном токе.
- •Билет №26
- •Классификация помещений и наружных установок по окружающей среде.
- •Расчетные условия для выбора аппаратов. Расчетные токи к.З.
- •Учет электроэнергии. Составление электробаланса предприятий. Принцип составления электробаланса
- •Билет 27
- •1. Выбор типа линий
- •2. Измерительные трансформаторы напряжений (тн). Схемы соединений
- •3 Сигнальные устройства, мнемосхемы.
- •Билет 28
- •3 Современная нтр и развитие энергетической техники.
- •Билет №29
- •Основные понятия о сетях предприятий и режимах работы электроприемников
- •2.Выбор элементов шинных соединений
- •3. Перспективы развития нетрадиционных и возобновляемых источников электроэнергии для условий рб.
- •Билет №30
- •Общие принципы построения схем электроснабжения. Схемы сетей на напряжение до 1000 в.
- •2. Молниезащита сооружений(№89).
- •3.Изоляторы. Их выбор. Типы коммутационных аппаратов.
Билет №21
1.Источники рм. Особенности некоторых компенсационных устройств.
ИРМ характеризуется высоким быстродействием, плавным изменением реактивной мощности, безинерционностью.
В качестве примера на рис. приведена схема статического ИРМ с параллельным включением регулируемой индуктивности и нерегулируемой емкости. В качестве индуктивности принят управляемый реактор с подмагничиванием, в качестве емкости - конденсаторная батарея.
Суммарная мощность ИРМ:
Q=QL - QC
QL- мощность, потребляемая реактором
QC - мощность. генерируемая конденсаторной батареей
Значение и направление мощности ИРМ в каждый момент зависят от регулируемой мощности QL. QC выбирается равной или несколько меньше ожидаемого наброса реактивной мощности. При набросе реактивной мощности ИРМ повышается до максимального значения, равного QC, а при сборе понижается до минимального значения.
Реактивную мощность в узлах сети можно изменять путем установки в них устройств поперечной компенсации, т. е. компенсирующих устройств (КУ), подключенных параллельно нагрузке. В качестве таких компенсирующих реактивную мощность устройств могут служить батареи конденсаторов, синхронные компенсаторы, шунтирующие и управляемые реакторы, статические тиристорные компенсаторы. К таким устройствам могут быть также отнесены генераторы местных электростанций, подключенных к системе передачи и распределения электроэнергии, синхронные электродвигатели, фильтры высших гармоник. Часть из указанных компенсирующих устройств может только выдавать в сеть реактивную мощность, некоторые - только потреблять из сети реактивную мощность (шунтирующие и управляемые реакторы). Наиболее ценными для регулирования напряжения являются устройства, обладающие способностями в зависимости от режима сети как генерировать, так и поглощать реактивную мощность (синхронные компенсаторы, статические тиристорные компенсаторы).
Компенсирующие устройства могут быть нерегулируемыми и регулируемыми. При включении нерегулируемого компенсирующего устройства в сети создается постоянная добавка потери напряжения (отрицательная или положительная). Если же компенсирующее устройство позволяет изменить свою мощность в зависимости от режима сети, то добавка потери напряжения оказывается переменной, в результате чего появляется возможность регулировать напряжение.
2.Выбор схем и напряжений тп.
В системах электроснабжения промышленных предприятий наибольшее применение нашли следующиеединичные мощности трансформаторов: 630, 1000, 1600 кВ×А, в электрических сетях городов - 400, 630 кВ×А. Практика проектирования и эксплуатации показала необходимость применения однотипных трансформаторов одинаковой мощности, так как разнообразие их создает неудобства в обслуживании и вызывает дополнительные затраты на ремонт. Как правило, в системах электроснабжения применяются одно- и двухтрансформаторные подстанции. Применение трехтрансформаторных подстанций вызывает дополнительные капзатраты и повышает годовые эксплуатационные расходы. Трехтрансформаторные подстанции используются редко, как вынужденное решение, при реконструкции, расширении подстанции, при системе раздельного питания силовой и осветительной нагрузок, при питании резкопеременных нагрузок.
Однотрансформаторные ТП 6-10/0,4 кВ применяются при питании нагрузок, допускающих перерыв электроснабжения на время не более 1 суток, необходимый для ремонта или замены поврежденного элемента (питание электроприемников III категории), а также для питания электроприемников II категории, при условии резервирования мощности по перемычкам на вторичном напряжении или при наличии складского резерва трансформаторов.
Однотрансформаторные ТП выгодны еще и в том отношении, что если работа предприятия сопровождается периодами малых нагрузок, то можно за счет наличия перемычек между трансформаторными подстанциями на вторичном напряжении отключать частьтрансформаторов, создавая этим экономически целесообразный режим работы трансформаторов.
Под экономическим режимом работы трансформаторов понимается режим, который обеспечивает минимальные потери мощности в трансформаторах. В данном случае решается задача выбора оптимального количества работающих трансформаторов.
Такие трансформаторные подстанции могут быть экономичны и в плане максимального приближения напряжения 6-10 кВ к электроприемникам, уменьшая протяженность сетей до 1 кВ за счет децентрализации трансформирования электрической энергии. В этом случае вопрос решается в пользу применения двух однотрансформаторных по сравнению с одной двухтрансформаторной подстанцией.
Двухтрансформаторные ТП применяются при преобладании электроприемников I и II категорий. При этом мощность трансформаторов выбирается такой, чтобы при выходе из работы одного, другой трансформатор с учетом допустимой перегрузки принял бы на себя нагрузку всех потребителей (в этой ситуации можно временно отключить электроприемники III категории). Такие подстанции желательны и независимо от категории потребителей при наличии неравномерного суточного или годового графика нагрузки. В этих случаях выгодно менять присоединенную мощность трансформаторов, например, при наличии сезонных нагрузок, одно или двухсменной работы со значительной различающейся загрузкой смен.
Электроснабжение населенного пункта, микрорайона города, цеха, группы цехов или всего предприятия может быть обеспечено от одной или нескольких трансформаторных подстанций. Целесообразность сооружения одно- или двухтрансформаторных подстанций определяется в результате технико-экономического сравнения нескольких вариантов системы электроснабжения. Критерием выбора варианта является минимум приведенных затрат на сооружение системы электроснабжения. Сравниваемые варианты должны обеспечивать требуемый уровень надежности электроснабжения.