Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Интерференция-макет.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
26.99 Mб
Скачать

6. Интерферометры и интерферометрия

Интерферометрия – это оптические измерения с использованием явления интерференции. Как правило, это тонкие и точные измерения, выполняемые на специальных приборах - интерферометрах. В качестве интерферометра могут использоваться установки, собранные для наблюдения и изучения интерференции.

Условие (1.16) максимума интерференции включает длину волны излучения, показатели преломления сред, в которых распространяется излучение, и длину хода лучей, определяемую геометрическими параметрами установки. Определяя положение или смещение максимумов и минимумов интерференционной картины, можно соответственно определить:

а) длину волны излучения;

б) показатели преломления, их изменение, а также другие параметры среды, влияющие на показатель преломления, например, давление газа или состав газовой смеси;

в) малые или не малые размеры (например, можно воссоздать эталон метра), перемещения, деформации, скорости и т.д. Наиболее распространены интерферометры Майкельсона, Линника, Маха-Цендера, Фабри-Перо, Релея, Жамена. Для нестандартных измерений разрабатывают специальные интерферометрические схемы.

7. Основной принцип интерференционных схем

Интерференция характерна для волн любой природы и сравнительно просто наблюдается на опыте для волн на поверхности воды или для звуковых волн. Наблюдать же интерференцию световых волн можно лишь при определенных условиях. Рассмотренные выше примеры интерференции являются идеализированными, так при интерпретации предполагалось, что источник света является точечным и излучает монохроматические сферические или плоские волны. Поэтому эти результаты имеют ограниченную применимость, так как реальные источники света не являются таковыми.

Дело в том, что свет, испущенный обычными (не лазерными) источниками, не бывает монохроматическим. Такой свет можно рассматривать как хаотичную последовательность отдельных цугов синусоидальных волн, длительность отдельного цуга порядка 10-8с, поэтому при наложении световых волн от разных источников фазовые соотношения между световыми колебаниями многократно изменяются случайным образом. Источники оказываются некогерентными, и достаточно устойчивой картины интерференции не возникает (сменяющие друг друга с весьма большой частотой картины интерференции в дальнейшем нас интересовать не будут, их регистрация требует специальных малоинерционных приемников). Поэтому для наблюдения интерференции с использованием немонохроматического света приходится прибегать к различным ухищрениям: применять спектральные фильтры, располагать источники таким образом, чтобы их можно было считать точечными и другим. И, тем не менее, когерентные световые волны можно получить даже от обычных источников. Общий принцип их получения таков: волну, излучаемую одним источником света, разделяют тем или иным способом на две части и затем накладывают их друг на друга подходящим способом.

Если разность хода этих волн от источника до точки наблюдения не превышает некоторые характерные длины, то случайные изменения амплитуды и фазы световых колебаний в двух волнах происходят согласованно (когерентно), и мы будем наблюдать интерференционную картину, например, систему чередующихся светлых и темных полос.

Как было показано ранее, образовавшиеся после разделения волны во всех интерференционных схемах можно представить как бы исходящими из двух точечных источников (действительных или мнимых — это не существенно).

Способы разделения волны от первичного источника на две когерентные между собой волны можно разбить на две группы: деление волнового фронта и деление амплитуды. На рис. 6.1 приведены примеры нескольких интерференционных схем, широко применяемых на практике.

Схемы на рис. 6.1 а-г относятся к первой группе. Во всех схемах излучение источника S попадает на экран по двум различным путям (плечам) интерференционной схемы, отмеченным на рисунках индексами 1 и 2. В любом случае вместо первичного источника можно рассматривать два когерентных источника S1 и S2, находящихся на некотором расстоянии d. Для определения положения и формы интерференционных полос излучение можно считать монохроматическим. Наиболее важными характеристиками любой интерференционной схемы являются: угол схождения волны в точке наблюдения и угол между лучами, исходящими из источника S, которые каким-либо способом сводятся далее в точку наблюдения. Угол ­ называется апертурой интерференции.

Рис. 6.1. Некоторые интерференционные схемы, широко применяемые в оптике: а — схема Юнга, б — схема Ллойда, в — бипризма Френеля, г — билинза Бийе, д — интерферометр Майкельсона, е — звёздный интерферометр. Все лучи 1 и 2 идут от удалённого источника.

Две когерентные световые волны можно получить в результате отражения света от двух поверхностей плоскопараллельной прозрачной пластинки (пленки) (Рис. 6.1г). В каждую точку наблюдения приходят волны, разность хода которых будет такой же, как от источников S1 и S2 — изображений S, создаваемых верхней и нижней поверхностями. Интерференционные полосы на экране B будут иметь вид концентрических колец с центром в точке O. При точечных источниках света будут наблюдаться резкие интерференционные картины при любом положении экрана, пересекающего интерференционные полосы. Такие полосы интерференции называют нелокализованными.

При плавном изменении разности хода интерферирующих пучков на интерференционная картина сместится настолько, что на месте максимумов окажутся минимумы. Поэтому явление интерференции используют в интерферометрах для измерения длины тел, длины световой волны, изменения длины тела при изменении температуры, сравнимых с .