Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Voprosy_po_fizike.doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
1.6 Mб
Скачать

Формулировка

Кинетическая энергия механической системы есть энергия движения центра масс плюс энергия движения относительно центра масс:

где  — полная кинетическая энергия системы,  — кинетическая энергия движения центра масс,  — относительная кинетическая энергия системы[2].

Иными словами, полная кинетическая энергия тела или системы тел в сложном движении равна сумме энергии системы в поступательном движении и энергии системы в её сферическом движении относительно центра масс.

Вывод

Приведём доказательство теоремы Кёнига для случая, когда массы тел, образующих механическую систему ,  распределены непрерывно[3].

Найдём относительную кинетическую энергию системы ,  трактуя её как кинетическую энергию, вычисленную относительно подвижной системы координат. Пусть  — радиус-вектор рассматриваемой точки системы   в подвижной системе координат. Тогда[4]:

где точкой обозначено скалярное произведение, а интегрирование ведётся по области пространства, занимаемой системой в текущий момент времени.

Если  — радиус-вектор начала координат подвижной системы, а  — радиус-вектор рассматриваемой точки системы   в исходной системе координат, то верно соотношение:

Вычислим полную кинетическую энергию системы в случае, когда начало координат подвижной системы помещено в её центр масс. С учётом предыдущего соотношения имеем:

Учитывая, что радиус-вектор одинаков для всех , можно, раскрыв скобки, вынести за знак интеграла:

Первое слагаемое в правой части этой формулы (совпадающее с кинетической энергией материальной точки, которая помещена в начало координат подвижной системы и имеет массу, равную массе механической системы) может интерпретироваться[2] как кинетическая энергия движения центра масс.

Второе слагаемое равно нулю, поскольку второй сомножитель в нём получается дифференцированием по времени произведения радиус-вектора центра масс на массу системы[5], но упомянутый радиус-вектор (а с ним и всё произведение) равен нулю:

так как начало координат подвижной системы находится (по сделанному предположению) в центре масс.

Третье же слагаемое, как было уже показано, равно , т. е. относительной кинетической энергии системы .

инетическую энергию материальной точки массой m, движущейся с абсолютной скоростью , определяют по формуле

где

Кинетическая энергия механической системы равна сумме кинетических энергий всех точек этой системы

11) Потенциальная инергия

Потенциальная энергия скалярная физическая величина, представляющая собой часть полной механической энергии системы, находящейся в поле консервативных сил. Зависит от положения материальных точек, составляющих систему, и характеризует работу, совершаемую полем при их перемещении[1]. Другое определение: потенциальная энергия — это функция координат, являющаяся слагаемым в лагранжиане системы, и описывающая взаимодействие элементов системы[2]. Термин «потенциальная энергия» был введен в XIX веке шотландским инженером и физиком Уильямом Ренкином.

Единицей измерения энергии в Международной системе единиц (СИ) является джоуль.

Потенциальная энергия принимается равной нулю для некоторой конфигурации тел в пространстве, выбор которой определяется удобством дальнейших вычислений. Процесс выбора данной конфигурации называется нормировкой потенциальной энергии.

Корректное определение потенциальной энергии может быть дано только в поле сил, работа которых зависит только от начального и конечного положения тела, но не от траектории его перемещения. Такие силы называются консервативными (потенциальными).

Также потенциальная энергия является характеристикой взаимодействия нескольких тел или тела и поля.

Любая физическая система стремится к состоянию с наименьшей потенциальной энергией.

Потенциальная энергия упругой деформации характеризует взаимодействие между собой частей тела.

Потенциальная энергия тела в поле тяготения Земли вблизи поверхности приближённо выражается формулой:

где  — масса тела,  — ускорение свободного падения,  — высота положения центра масс тела над произвольно выбранным нулевым уровнем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]