
- •1) Основные понятия механики. Способы описания движения. Пространство и время .
- •2) Виды механических движений. Прямолинейное движение. Скорость и ускорение.
- •3) Виды механических движений. Криволинейное движение.Скорость и ускорение
- •4) Виды механических движений. Вращательное движение.
- •5) Инерциальные системы отсчета. Преобразования Галилея.
- •6)Динамика материальной точки. Сила. Законы ньютона.
- •7) Виды сил в механике.
- •8) Импульс. Законы сохранения импульса
- •9) Работа силы . Мощность . Кпд.
- •10) Кинетическая инергия. Теорема Кенинга.
- •Формулировка
- •11) Потенциальная инергия
- •12) Закон сохранения механической энергии
- •13) Столкновение двух тел
- •14) Динамика вращательного движения. Момент силы . Момент импульса. Закон сохранения момента импульса.
- •§2 Кинетическая энергия вращения
- •§3 Момент силы. Уравнение динамики вращательного движения твердого тела
- •Модуль момента силы:
- •§4 Момент импульса. Закон сохранения момента импульса
- •15) Динамика вращательного движения. Момент силы. Момент инерции.
- •16) Основы сто.
- •Постулаты сто
- •17) Предмет и задачи молекулярной физики и термодинамики.
- •18) Основные законы идеальных газов.
- •19) Основное уравнение молекулярно- кинетической теории идеальных газов.
- •20) Закон равномерного распределения энергии по степеням свободы молекул.
- •21) Распределение молекул идеального газа по скоростям (распределение Максвела)
- •22) Распределение молекул идеального газа во внешнем потенциальном поле.
- •23) Средняя длина свободного пробега молекул .
- •Формула
- •24) Явления переноса в газах.
- •25) Внутренняя энергия. Работа. Теплота.
- •26) Первое начало термодинамики
- •27) Применение первого начала термодинамики к изопроцессам идеальных газов.
- •28) Адиабатный и политропный процессы идеальных газов.
- •29) Теория теплоемкостей идеальных газов
- •30) Тепловые двигатели. Холодильная машина.
- •31) Цикл карно .Обратимые и необратимые процессы.
- •32) Второе начало термодинамики. Энтропия.
- •33) Межмолекулярное взаимодействие.
- •34) Уравнение Ван-дер-Ваальс.
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса[2]
- •35) Экспериментальные изотермы
- •36) Фазовые переходы 1 и 2 рода
- •Изменение симметрии
- •Флуктуационная теория
- •Примеры фазовых переходов второго рода
- •37) Особенности жидкого состояния в-ва.
- •38) Поверхностное натяжение. Поверхностное давление
- •39) Каппилярные явления
- •40) Диаграмма состояния. Тройная точка
8) Импульс. Законы сохранения импульса
Импульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости: Закон сохранения импульса утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.. , при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. находят применение при создании современной ракетно-космической техники. Движение с помощью реактивной струи по закону сохранения импульса лежит в основе гидрореактивного двигателя. В основе движения многих морских моллюсков (осьминогов, медуз, кальмаров, каракатиц) также лежит реактивный принцип.
9) Работа силы . Мощность . Кпд.
работа силы Понятие “работа“ как физическая величина во всех энциклопедиях, справочниках и учебниках раскрывается как понятие “работа силы“ при описании прямолинейной механической формы движения. Работа силы - мера механического действия силы при перемещении точки ее приложения. Работа силы есть скалярная физическая величина, равная произведению: - силы; - перемещения; и - косинуса угла между направлением действия силы и перемещением. РАБОТА силы - мера действия силы, зависящая от численной величины и направления силы F и от перемещения s точки ее приложения.
Мощность. КПд
Любая машина, которая используется для выполнения работы, характеризуется особой величиной, которая называется мощностью.
Мощность - это физическая величина, равная отношению работы ко времени, за который эта работа была выполнена. Мощность обозначается буквой N и в Системе Интернациональной измеряется в ваттах, в честь английского ученого 18-19 века Джеймса Уатта. Если мощность известна, то работу, которая выполняется за единицу времени, можно найти как произведение мощности на время. Поэтому за единицу работы можно взять работу, которая выполняется за 1 секунду при мощности 1 ватт. Такая единица работы называется ватт-секундой (Вт • с).
Если тело движется равномерно, то его мощность можно рассчитать как произведение силы тяги и скорости движения.
В реальных условиях часть механической энергии всегда теряется, поскольку идет на увеличение внутренней энергии двигателя и других частей машины. Для того чтобы характеризовать эффективность двигателей и устройств, пользуются коэффициентом полезного действия.
Коэффициент полезного действия (КПД) - это физическая величина, равная отношению полезной работы к полной работы. КПД обозначается буквой η и измеряется в процентах. Полезная работа всегда меньше полной. КПД всегда меньше 100%.
10) Кинетическая инергия. Теорема Кенинга.
Теоре́ма Кёнига позволяет выразить полную кинетическую энергию механической системы через энергию движения центра масс и энергию движения относительно центра масс.