
- •1) Основные понятия механики. Способы описания движения. Пространство и время .
- •2) Виды механических движений. Прямолинейное движение. Скорость и ускорение.
- •3) Виды механических движений. Криволинейное движение.Скорость и ускорение
- •4) Виды механических движений. Вращательное движение.
- •5) Инерциальные системы отсчета. Преобразования Галилея.
- •6)Динамика материальной точки. Сила. Законы ньютона.
- •7) Виды сил в механике.
- •8) Импульс. Законы сохранения импульса
- •9) Работа силы . Мощность . Кпд.
- •10) Кинетическая инергия. Теорема Кенинга.
- •Формулировка
- •11) Потенциальная инергия
- •12) Закон сохранения механической энергии
- •13) Столкновение двух тел
- •14) Динамика вращательного движения. Момент силы . Момент импульса. Закон сохранения момента импульса.
- •§2 Кинетическая энергия вращения
- •§3 Момент силы. Уравнение динамики вращательного движения твердого тела
- •Модуль момента силы:
- •§4 Момент импульса. Закон сохранения момента импульса
- •15) Динамика вращательного движения. Момент силы. Момент инерции.
- •16) Основы сто.
- •Постулаты сто
- •17) Предмет и задачи молекулярной физики и термодинамики.
- •18) Основные законы идеальных газов.
- •19) Основное уравнение молекулярно- кинетической теории идеальных газов.
- •20) Закон равномерного распределения энергии по степеням свободы молекул.
- •21) Распределение молекул идеального газа по скоростям (распределение Максвела)
- •22) Распределение молекул идеального газа во внешнем потенциальном поле.
- •23) Средняя длина свободного пробега молекул .
- •Формула
- •24) Явления переноса в газах.
- •25) Внутренняя энергия. Работа. Теплота.
- •26) Первое начало термодинамики
- •27) Применение первого начала термодинамики к изопроцессам идеальных газов.
- •28) Адиабатный и политропный процессы идеальных газов.
- •29) Теория теплоемкостей идеальных газов
- •30) Тепловые двигатели. Холодильная машина.
- •31) Цикл карно .Обратимые и необратимые процессы.
- •32) Второе начало термодинамики. Энтропия.
- •33) Межмолекулярное взаимодействие.
- •34) Уравнение Ван-дер-Ваальс.
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса[2]
- •35) Экспериментальные изотермы
- •36) Фазовые переходы 1 и 2 рода
- •Изменение симметрии
- •Флуктуационная теория
- •Примеры фазовых переходов второго рода
- •37) Особенности жидкого состояния в-ва.
- •38) Поверхностное натяжение. Поверхностное давление
- •39) Каппилярные явления
- •40) Диаграмма состояния. Тройная точка
38) Поверхностное натяжение. Поверхностное давление
Пове́рхностное натяже́ние — термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объём системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными.
Поверхностное натяжение имеет двойной физический смысл — энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение — это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение — это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости[1].
Сила
поверхностного натяжения направлена
по касательной к поверхности жидкости,
перпендикулярно к участку контура, на
который она действует и пропорциональна
длине этого участка. Коэффициент
пропорциональности
—
сила, приходящаяся на единицу длины
контура — называется коэффициентом
поверхностного натяжения. Он измеряется
в ньютонах на метр. Но более правильно
дать определение поверхностному
натяжению, как энергии (Дж) на разрыв
единицы поверхности (м²). В этом случае
появляется ясный физический смысл
понятия поверхностного натяжения.
Так как появление поверхности жидкости требует совершения работы, каждая среда «стремится» уменьшить площадь своей поверхности:
в невесомости капля принимает сферическую форму (сфера имеет наименьшую площадь поверхности среди всех тел одинакового объёма).
струя воды «капли» в цилиндр.
маленькие объекты с плотностью, большей плотности жидкости, способны «плавать» на поверхности жидкости, так как сила тяготения оказывается уравновешенной силой поверхностного натяжения.
некоторые насекомые (например, водомерки) способны передвигаться по воде, удерживаясь на её поверхности за счёт сил поверхностного натяжения.
На многих поверхностях, именуемых несмачиваемыми, вода (или другая жидкость) собирается в капли носков.
Формула Лапласа
Рассмотрим тонкую жидкую плёнку, толщиной которой можно пренебречь. Стремясь минимизировать свою свободную энергию, плёнка создаёт разность давления с разных сторон. Этим объясняется существование мыльных пузырей: плёнка сжимается до тех пор, пока давление внутри пузыря не будет превышать атмосферное на величину добавочного давления плёнки. Добавочное давление в точке поверхности зависит от средней кривизны в этой точке и задаётся формулой Лапласа:
Здесь
— радиусы главных кривизн в точке. Они имеют одинаковый знак, если соответствующие центры кривизны лежат по одну сторону от касательной плоскости в точке, и разный знак — если по разную сторону. Например, для сферы центры кривизны в любой точке поверхности совпадают с центром сферы, поэтому
Для случая поверхности кругового цилиндра радиуса имеем
Обратите внимание, что
должно быть непрерывной функцией на поверхности плёнки, так что выбор «положительной» стороны плёнки в одной точке локально однозначно задаёт положительную сторону поверхности в достаточно близких её точках.
Из формулы Лапласа следует, что свободная мыльная плёнка, натянутая на рамку произвольной формы и не образующая пузырей, будет иметь среднюю кривизну, равную 0.