
- •1) Основные понятия механики. Способы описания движения. Пространство и время .
- •2) Виды механических движений. Прямолинейное движение. Скорость и ускорение.
- •3) Виды механических движений. Криволинейное движение.Скорость и ускорение
- •4) Виды механических движений. Вращательное движение.
- •5) Инерциальные системы отсчета. Преобразования Галилея.
- •6)Динамика материальной точки. Сила. Законы ньютона.
- •7) Виды сил в механике.
- •8) Импульс. Законы сохранения импульса
- •9) Работа силы . Мощность . Кпд.
- •10) Кинетическая инергия. Теорема Кенинга.
- •Формулировка
- •11) Потенциальная инергия
- •12) Закон сохранения механической энергии
- •13) Столкновение двух тел
- •14) Динамика вращательного движения. Момент силы . Момент импульса. Закон сохранения момента импульса.
- •§2 Кинетическая энергия вращения
- •§3 Момент силы. Уравнение динамики вращательного движения твердого тела
- •Модуль момента силы:
- •§4 Момент импульса. Закон сохранения момента импульса
- •15) Динамика вращательного движения. Момент силы. Момент инерции.
- •16) Основы сто.
- •Постулаты сто
- •17) Предмет и задачи молекулярной физики и термодинамики.
- •18) Основные законы идеальных газов.
- •19) Основное уравнение молекулярно- кинетической теории идеальных газов.
- •20) Закон равномерного распределения энергии по степеням свободы молекул.
- •21) Распределение молекул идеального газа по скоростям (распределение Максвела)
- •22) Распределение молекул идеального газа во внешнем потенциальном поле.
- •23) Средняя длина свободного пробега молекул .
- •Формула
- •24) Явления переноса в газах.
- •25) Внутренняя энергия. Работа. Теплота.
- •26) Первое начало термодинамики
- •27) Применение первого начала термодинамики к изопроцессам идеальных газов.
- •28) Адиабатный и политропный процессы идеальных газов.
- •29) Теория теплоемкостей идеальных газов
- •30) Тепловые двигатели. Холодильная машина.
- •31) Цикл карно .Обратимые и необратимые процессы.
- •32) Второе начало термодинамики. Энтропия.
- •33) Межмолекулярное взаимодействие.
- •34) Уравнение Ван-дер-Ваальс.
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса[2]
- •35) Экспериментальные изотермы
- •36) Фазовые переходы 1 и 2 рода
- •Изменение симметрии
- •Флуктуационная теория
- •Примеры фазовых переходов второго рода
- •37) Особенности жидкого состояния в-ва.
- •38) Поверхностное натяжение. Поверхностное давление
- •39) Каппилярные явления
- •40) Диаграмма состояния. Тройная точка
36) Фазовые переходы 1 и 2 рода
Фазовые переходы второго рода — фазовые переходы, при которых вторые производные термодинамических потенциалов по давлению и температуре изменяются скачкообразно, тогда как их первые производные изменяются постепенно. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость, сжимаемость, различные восприимчивости и т. д.
Изменение симметрии
Фазовые переходы второго рода сопровождаются изменением симметрии вещества. Изменение симметрии может быть связано со смещением атомов определённого типа в кристаллической решётке, либо с изменением упорядоченности вещества.
В большинстве случаев, фаза, обладающая большей симметрией (т. е. включающей в себя все симметрии другой фазы), соответствует более высоким температурам, но существуют и исключения. Например, при переходе через нижнюю точку Кюри в сегнетовой соли, фаза, соответствующая меньшей температуре, обладает ромбической симметрией, в то время как фаза, соответствующая большей температуре, обладает моноклинной симметрией.
Для количественной характеристики симметрии при фазовом переходе второго рода вводится параметр порядка, принимающий отличные от нуля значения в фазе с большей симметрией, и тождественно равный нулю в неупорядоченной фазе.
Теория среднего поля
Основная статья: Теория Ландау
Теория среднего поля – самый первый и простейший способ теоретического описания критических явлений. Для этого производится линеаризация многочастичного гамильтониана взаимодействия, то есть фактически, он заменяется на одночастичный гамильтониан с некоторым эффективным самосогласованным полем. Таким образом мы переходим от близкодействия к дальнодействию, то есть к взаимодействию с формально бесконечным радиусом. Также мы пренебрегаем корреляционными эффектами.
Применение теории среднего поля для описания фазовых переходов фактически эквивалентно применению теории Ландау, то есть разложению функционала свободной энергии по степеням параметра порядка около критической точки.
При описании фазовых переходов, эффективное поле обычно принимается пропорциональным параметру порядка. Как правило, множителем пропорциональности является средняя энергия взаимодействия частиц системы. Так, в магнетике рассматривается действие на отдельный электронный спин локального магнитного поля, создаваемое соседними спинами.
Критические показатели для магнетика в теории Ландау:
Для других систем – антиферромагнетика, бинарного сплава и системы жидкость-пар теория среднего поля даёт те же критические показатели.
Критические показатели, полученные в теории среднего поля плохо согласуются с экспериментальными значениями. Но она предсказывает полную универсальность показателей, то есть их независимость от деталей теории.
Основным недостатком теории является то, что она неприменима в тех случаях, когда существенными становятся флуктуации параметра порядка, то есть непосредственно в окрестности точки фазового перехода:Теория Ландау справедлива до тех пор, пока флуктуации в объеме с линейными размерами порядка радиуса корреляции малы по сравнению с равновесным значением параметра порядка. В противном случае термодинамический подход неприменим. Для самих точек фазового перехода теория даёт завышенные показания, а предсказываемые ей критические показатели отличаются от экспериментальных значений. Кроме того, критические показатели, согласно теории среднего поля, не зависят от размерностей пространства и параметра порядка. Для систем с размерностями d=1, d=2 теория среднего поля вообще не применима.
Гауссово приближение
В гауссовом приближении решается модель Гинзбурга-Ландау. Наивероятнейшая конфигурация ищется минимизацией блочного гамильтониана. Отклонения от наивероятнейшей конфигурации считаются независимыми и распределёнными по гауссу.
Блочный гамильтониан Гинзбурга-Ландау - простейшая форма блочного гамильтониана:
|
( |
|
( |
В Фурье-представлении имеет вид:
|
( |
Наивероятнейшая
спиновая конфигурация
,
минимизирующая
,
должна быть однородной, то есть градиентный
член должен быть равен нулю. Таким
образом,
|
( |
Все
фурье-компоненты с
равны
нулю:
|
( |
Подставляя в , получаем:
|
( |
Наивероятнейшее
значение,
,
найдём, минимизируя
:
|
( |
|
( |
-
единичный вектор в направлении
Если
рассматривать только наивероятнейшее
значение, то мы будем иметь дело с теорией
среднего поля Ландау,
поэтому нужно рассмотреть отклонения
от наивероятнейшей конфигурации в
гауссовом приближении. Случаи
и
рассмотрим
отдельно.
В
этом случае
и
для простоты положим
.
В представлении
оставим
члены не выше второго порядка по
:
|
( |
Мерой
отклонения от наивероятнейшего значения
служит
-
квадрат полуширины Гауссова распределения
.
В данном случае:
В
этом случае
остаётся
ненулевой величиной. Считаем
конечным,
но малым вектором. Разложим
по
степеням
и
оставим члены до второго порядка
включительно. Используем формулы
и
:
|
( |
-
намагниченность.
В данном случае,
и
Гауссово приближение описывает многие важные свойства критических явлений. Предсказываемые ей критические индексы –
,
,
,
,
,
.
Все
показатели, полученные в гауссовом
приближении совпадают с таковыми из
теории среднего поля. Но теперь
теплоемкость
не только имеет разрыв при
,
но и расходится при
.
Причиной этой расходимости служат
флуктуации мод с малыми
.
В теории Ландау мы пренебрегаем модами
с
.
Мы учитываем флуктуации лишь до второго порядка, считая, что они малы. Но вблизи критической точки флуктуации сильно возрастают, поэтому гауссово приближение становится неприменимым.