
- •1) Основные понятия механики. Способы описания движения. Пространство и время .
- •2) Виды механических движений. Прямолинейное движение. Скорость и ускорение.
- •3) Виды механических движений. Криволинейное движение.Скорость и ускорение
- •4) Виды механических движений. Вращательное движение.
- •5) Инерциальные системы отсчета. Преобразования Галилея.
- •6)Динамика материальной точки. Сила. Законы ньютона.
- •7) Виды сил в механике.
- •8) Импульс. Законы сохранения импульса
- •9) Работа силы . Мощность . Кпд.
- •10) Кинетическая инергия. Теорема Кенинга.
- •Формулировка
- •11) Потенциальная инергия
- •12) Закон сохранения механической энергии
- •13) Столкновение двух тел
- •14) Динамика вращательного движения. Момент силы . Момент импульса. Закон сохранения момента импульса.
- •§2 Кинетическая энергия вращения
- •§3 Момент силы. Уравнение динамики вращательного движения твердого тела
- •Модуль момента силы:
- •§4 Момент импульса. Закон сохранения момента импульса
- •15) Динамика вращательного движения. Момент силы. Момент инерции.
- •16) Основы сто.
- •Постулаты сто
- •17) Предмет и задачи молекулярной физики и термодинамики.
- •18) Основные законы идеальных газов.
- •19) Основное уравнение молекулярно- кинетической теории идеальных газов.
- •20) Закон равномерного распределения энергии по степеням свободы молекул.
- •21) Распределение молекул идеального газа по скоростям (распределение Максвела)
- •22) Распределение молекул идеального газа во внешнем потенциальном поле.
- •23) Средняя длина свободного пробега молекул .
- •Формула
- •24) Явления переноса в газах.
- •25) Внутренняя энергия. Работа. Теплота.
- •26) Первое начало термодинамики
- •27) Применение первого начала термодинамики к изопроцессам идеальных газов.
- •28) Адиабатный и политропный процессы идеальных газов.
- •29) Теория теплоемкостей идеальных газов
- •30) Тепловые двигатели. Холодильная машина.
- •31) Цикл карно .Обратимые и необратимые процессы.
- •32) Второе начало термодинамики. Энтропия.
- •33) Межмолекулярное взаимодействие.
- •34) Уравнение Ван-дер-Ваальс.
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса[2]
- •35) Экспериментальные изотермы
- •36) Фазовые переходы 1 и 2 рода
- •Изменение симметрии
- •Флуктуационная теория
- •Примеры фазовых переходов второго рода
- •37) Особенности жидкого состояния в-ва.
- •38) Поверхностное натяжение. Поверхностное давление
- •39) Каппилярные явления
- •40) Диаграмма состояния. Тройная точка
34) Уравнение Ван-дер-Ваальс.
Уравнение состояния газа Ван-дер-Ваальса — уравнение, связывающее основные термодинамические величины в модели газа Ван-дер-Ваальса.
Хотя модель идеального газа хорошо описывает поведение реальных газов при низких давлениях и высоких температурах, в других условиях её соответствие с опытом гораздо хуже. В частности, это проявляется в том, что реальные газы могут быть переведены в жидкое и даже в твёрдое состояние, а идеальные — не могут.
Для более точного описания поведения реальных газов при низких температурах была создана модель газа Ван-дер-Ваальса, учитывающая силы межмолекулярного взаимодействия. В этой модели внутренняя энергия становится функцией не только температуры, но и объёма.
Уравнение Ван-дер-Ваальса — это одно из широко известных приближённых уравнений состояния, имеющее компактную форму и учитывающее основные характеристики газа с межмолекулярным взаимодействием[1].
ермическим уравнением состояния (или, часто, просто уравнением состояния) называется связь между давлением, объёмом и температурой.
Для одного моля газа Ван-дер-Ваальса оно имеет вид:
где
— давление,
— молярный объём,
— абсолютная температура,
— универсальная газовая постоянная.
Видно,
что это уравнение фактически является
уравнением
состояния идеального газа
с двумя поправками. Поправка
учитывает
силы притяжения между молекулами
(давление на стенку уменьшается, так
как есть силы, втягивающие молекулы
приграничного слоя внутрь), поправка
—
объем молекул газа.
Для
молей
газа Ван-дер-Ваальса уравнение состояния
выглядит так:
где