
- •1) Основные понятия механики. Способы описания движения. Пространство и время .
- •2) Виды механических движений. Прямолинейное движение. Скорость и ускорение.
- •3) Виды механических движений. Криволинейное движение.Скорость и ускорение
- •4) Виды механических движений. Вращательное движение.
- •5) Инерциальные системы отсчета. Преобразования Галилея.
- •6)Динамика материальной точки. Сила. Законы ньютона.
- •7) Виды сил в механике.
- •8) Импульс. Законы сохранения импульса
- •9) Работа силы . Мощность . Кпд.
- •10) Кинетическая инергия. Теорема Кенинга.
- •Формулировка
- •11) Потенциальная инергия
- •12) Закон сохранения механической энергии
- •13) Столкновение двух тел
- •14) Динамика вращательного движения. Момент силы . Момент импульса. Закон сохранения момента импульса.
- •§2 Кинетическая энергия вращения
- •§3 Момент силы. Уравнение динамики вращательного движения твердого тела
- •Модуль момента силы:
- •§4 Момент импульса. Закон сохранения момента импульса
- •15) Динамика вращательного движения. Момент силы. Момент инерции.
- •16) Основы сто.
- •Постулаты сто
- •17) Предмет и задачи молекулярной физики и термодинамики.
- •18) Основные законы идеальных газов.
- •19) Основное уравнение молекулярно- кинетической теории идеальных газов.
- •20) Закон равномерного распределения энергии по степеням свободы молекул.
- •21) Распределение молекул идеального газа по скоростям (распределение Максвела)
- •22) Распределение молекул идеального газа во внешнем потенциальном поле.
- •23) Средняя длина свободного пробега молекул .
- •Формула
- •24) Явления переноса в газах.
- •25) Внутренняя энергия. Работа. Теплота.
- •26) Первое начало термодинамики
- •27) Применение первого начала термодинамики к изопроцессам идеальных газов.
- •28) Адиабатный и политропный процессы идеальных газов.
- •29) Теория теплоемкостей идеальных газов
- •30) Тепловые двигатели. Холодильная машина.
- •31) Цикл карно .Обратимые и необратимые процессы.
- •32) Второе начало термодинамики. Энтропия.
- •33) Межмолекулярное взаимодействие.
- •34) Уравнение Ван-дер-Ваальс.
- •Критические параметры
- •Приведённые параметры
- •Недостатки уравнения Ван-дер-Ваальса[2]
- •35) Экспериментальные изотермы
- •36) Фазовые переходы 1 и 2 рода
- •Изменение симметрии
- •Флуктуационная теория
- •Примеры фазовых переходов второго рода
- •37) Особенности жидкого состояния в-ва.
- •38) Поверхностное натяжение. Поверхностное давление
- •39) Каппилярные явления
- •40) Диаграмма состояния. Тройная точка
22) Распределение молекул идеального газа во внешнем потенциальном поле.
При выводе основного уравнения молекулярно-кинетической теории газов предполагается, что молекулы распределены по объему равномерно. Это возможно только при отсутствии внешних сил. На самом деле в земных условиях молекулы испытывают на себе действие поля тяжести, т. е. находятся во внешнем потенциальном поле. В результате действия двух факторов, поля тяжести и теплового движения, в газе устанавливается некоторое распределение молекул по высоте.
Найдем закон, описывающий зависимость давления газа от высоты над поверхностью земли. Известно, что гидростатическое давление жидкости на глубине h равно
,
где
-
плотность жидкости. Поскольку жидкости
мало сжимаемы, можно считать их плотность
практически независящей от глубины.
Газы, в отличие от жидкостей, довольно
легко сжимаемы, поэтому их плотность
существенно зависит от высоты. Но и для
газов можно пользоваться подобной
формулой, если перепад высот небольшой.
Предполагая, что высота h точки наблюдения
от поверхности земли получила элементарное
приращение dh, получим приращение давления
.
Из уравнения Клапейрона-Менделеева выразим плотность
.
Тогда
,
.
Интегрируя в предположении, что температура не зависит от высоты, получим так называемую барометрическую формулу:
,
где p0, p - давление у поверхности земли и на высоте h соответственно.
Аналогичная формула получается для зависимости концентрации молекул от высоты. Т.к. n~p, получаем, что
.
Показатель экспоненты можно представить в виде
,
где
-
потенциальная энергия молекулы в поле
тяжести Земли. Используя это выражение,
получим, что
.
Больцман показал, что эта формула является универсальной, описывающей распределение частиц по значениям потенциальной энергии в любом внешнем потенциальном поле. Это соотношение называют законом распределения Больцмана.
23) Средняя длина свободного пробега молекул .
Длина
свободного пробега молекулы — это
среднее расстояние (обозначаемое
),
которое частица пролетает за время
свободного пробега от одного столкновения
до следующего.
Длина свободного пробега каждой молекулы различна, поэтому в кинетической теории вводится понятие средней длины свободного пробега (<λ>). Величина <λ> является характеристикой всей совокупности молекул газа при заданных значениях давления и температуры.
Формула
,
где
—
эффективное
сечение молекулы,
—
концентрация
молекул.
24) Явления переноса в газах.
Рассмотрим некоторые явления, происходящие в газах. |
|
Распространение молекул примеси в газе от источника называется диффузией.
В состоянии равновесия температура Т и концентрация n во всех точках системы одинакова. При отклонении плотности от равновесного значения в некоторой части системы возникает движение компонент вещества в направлениях, приводящих к выравниванию концентрации по всему объему системы. Связанный с этим движением перенос вещества обусловлен диффузией. Диффузионный поток будет пропорционален градиенту концентрации:
|
|
|
|
Если какое-либо тело движется в газе, то оно сталкивается с молекулами газа и сообщает им импульс. С другой стороны, тело тоже будет испытывать соударения со стороны молекул, и получать собственный импульс, но направленный в противоположную сторону. Газ ускоряется, тело тормозится, то есть на тело действуют силы трения. Такая же сила трения будет действовать и между двумя соседними слоями газа, движущимися с разными скоростями. Это явление носит название внутреннее трение или вязкость газа, причём сила трения пропорциональна градиенту скорости:
.
(3.1.1)
Если в соседних слоях газа создана и поддерживается разность температур, то между ними будет происходить обмен тепла. Благодаря хаотическому движению, молекулы в соседних слоях будут перемешиваться и их средние энергии будут выравниваться. Происходит перенос энергии от более нагретых слоев к более холодным телам. Этот процесс называется теплопроводностью. Поток тепла пропорционален градиенту температуры:
.
(3.1.2)
В состоянии равновесия в среде, содержащей заряженные частицы, потенциал электрического поля в каждой точке соответствует минимуму энергии системы. При наложении внешнего электрического поля возникает неравновесное движение электрических зарядов в таком направлении, чтобы минимизировать энергию системы в новых условиях. Связанный с этим движением перенос электрического заряда называется электропроводностью, а само направленное движение зарядов - электрическим током.
В процессе диффузии при теплопроводности и электропроводности происходит перенос вещества, а при внутреннем трении – перенос энергии. В основе этих явлений лежит один и тот же механизм – хаотическое движение молекул. Общность механизма, обуславливающего все эти явления переноса, приводит к тому, что их закономерности должны быть похожи друг на друга.