- •Спутниковые телекоммуникационные технологии
- •1. Введение
- •1.1. Краткая история
- •1.2. Направления и перспективы развития спутниковых технологий
- •1.3. Телевидение
- •1.4. Системы навигации
- •1.4.2. Глонасс
- •1.5. Спутниковая телефония
- •1.6. Аварийно-спасательные системы
- •1.8. Использование космического пространства
- •1.9. Тенденции развития спутниковых телекоммуникаций
- •2. Классификация, способы организации и использования ресурсов систем спутниковых телекоммуникаций
- •2.1. Частотный ресурс и его характеристики
- •2.2. Способ использования частотного ресурса
- •2.3. Способы организации канала связи
- •2.4. Характеристики космического сегмента
- •3. Оборудование систем спутниковых телекоммуникаций
- •3.1. Спутниковые антенны
- •3.1.1. Классификация спутниковых антенн
- •3.1.2. Упрощенный расчет диаметра параболической приемной антенны
- •3.1.3. Методика расчета азимутального подвеса
- •3.1.4. Полярный подвес спутниковой антенны и его методика расчета
- •3.1.5. Расчет видимости спутников в данной местности
- •3.1.6. Расчет поворота плоскости поляризации
- •3.1.7. Способы улучшения эксплуатационных характеристик спутниковых антенн
- •3.2. Устройства позиционирования
- •3.3. Коммуникационное оборудование
- •3.3.1. Конверторы спутниковых приемных устройств
- •Классификация конверторов
- •Устройство конвертора
- •3.3.2. Спутниковые ресиверы (приемники)
- •3.3.3. Компьютерные карты
- •3.3.4. Переключатели
- •Вопросы для самопроверки
- •4. Стандарты управления антенными системи и другим коммуникационным оборудованием
- •4.1. Протокол DiSEqC 1.0 – 1.2, 2.0
- •4.2. Протокол miniDiSEqC (Tone Burst)
- •4.3. Протокол DiSEqC 2.0
- •4.4. Протокол DiSEqC 3.0
- •4.5. Технология usals
- •Вопросы для самопроверки
- •5. Проблемы спутникового приема и передачи сигналов
- •6. Особенности организация коллективного приема
- •Словарь терминов спутниковых телекоммуникаций Общая терминология
- •Параметры орбиты космического аппарата (спутника) и его элементов
- •Параметры спутниковой антенны и ее подвески
- •Антенная система
- •Приемное устройство
- •Библиографический список
- •Приложение. Расчет параметров геостационарной орбиты
- •Оглавление
- •1. Введение 3
- •2. Классификация, способы организации и использования ресурсов систем спутниковых телекоммуникаций 17
- •3. Оборудование систем спутниковых телекоммуникаций 28
- •4. Стандарты управления антенными системи и другим коммуникационным оборудованием 58
- •5. Проблемы спутникового приема и передачи сигналов 65
- •6. Особенности организация коллективного приема 65
- •Спутниковые телекоммуникационные технологии
- •603950, Нижний Новгород, ул. Нестерова, 5а
1.4.2. Глонасс
Развитие отечественной спутниковой радионавигационной системы также началось с запуска в Советском Союзе 4 октября 1957 г. первого ИСЗ в связи с необходимостью слежения за ним. Первое же научно-обоснованное предложение об использовании ИСЗ для навигации было сформулировано в период проведения в Ленинградской военно-воздушной инженерной академии (ЛВВИА) им. А. Ф. Можайского с 1955 по 1957 гг. исследований возможностей радиоастрономических методов для самолетовождения. Работы проводились с участием крупных специалистов по аналитической механике и расчетам орбит. Основное внимание при этом уделялось вопросам повышения точности навигационных определений, обеспечения глобальности, круглосуточного применения и независимости от погодных условий.
Летные испытания высокоорбитальной отечественной навигационной системы, получившей название ГЛОНАСС (Глобальная навигационная спутниковая система), были начаты в октябре 1982 г. запуском спутника «Космос-1413». Нормальное функционирование системы ГЛОНАСС должны были обеспечить 24 космических аппарата (КА) и сложная наземная инфраструктуру комплекса.
Вначале ГЛОНАСС использовалась в основном только для военных нужд, но в настоящее время она является открытой системой для пользователей. Она имеет свои преимущества перед американской системой GPS. Практическое использование комбинированных приемников ГЛОНАСС/GPS обеспечивает максимальную эффективность.
1.4.3. GALILEO
Европейская навигационная система GALILEO является еще одной существующих глобальных навигационных спутниковых систем (ГНСС). GALILEO – это многоцелевая система. В частности, она призвана повысить точность позиционирования по сравнению с современными возможностями ГЛОНАСС/ GPS. Одной из ее особенностей будет доступность навигационных решений в высоких широтах. Кроме того, GALILEO должна стать независимой навигационной основой для стран Европы. Ввод ее в эксплуатацию предполагается к 2012/14 г., в систему войдут 30 спутников (27 основных и 3 резервных), а также сеть наземных станций. Спутники GALILEO будут перемещаться по орбитам, чья высота несколько больше, чем высота орбит спутников GPS, однако принцип определения координат точек местности остается тем же.
1.4.4. BeiDou
В настоящее время Китай разрабатывают свой вариант спутниковой системы позиционирования специально для азиатско-тихоокеанского региона. Эта спутниковая навигационная система называется BeiDou Navigation Satellite System. Вступила в строй в 2010 г.
Система полностью совместима с российской ГЛОНАСС, европейской GALILEO и американской GPS. BeiDou, также как и остальные системы позиционирования, будет полностью бесплатной для использования, однако за плату можно будет воспользоваться шифрованными каналами связи, предназначенными для специального использования, например, в военной среде.
Система BeiDou предусматривает наличие пяти спутников на геостационарной орбите и 30 спутников на орбите средней дальности. Первый спутник системы, рассчитанный на орбиту средней дальности, был запущен в 2007 г.
1.4.5. QZSS
Quasi-Zenith Satellite System (QZSS, «Квазизенитная спутниковая система», или Квази-Зенит) – трёхспутниковая региональная система синхронизации времени и дифференциальной коррекции для GPS. Япония разворачивает собственную локальную группировку Квази-Зенит, спутники которой будут расположены на высокоэллиптической орбите над азиатско-тихоокеанским регионом. Сигналы QZSS будут доступны в Японии.
