- •Спутниковые телекоммуникационные технологии
- •1. Введение
- •1.1. Краткая история
- •1.2. Направления и перспективы развития спутниковых технологий
- •1.3. Телевидение
- •1.4. Системы навигации
- •1.4.2. Глонасс
- •1.5. Спутниковая телефония
- •1.6. Аварийно-спасательные системы
- •1.8. Использование космического пространства
- •1.9. Тенденции развития спутниковых телекоммуникаций
- •2. Классификация, способы организации и использования ресурсов систем спутниковых телекоммуникаций
- •2.1. Частотный ресурс и его характеристики
- •2.2. Способ использования частотного ресурса
- •2.3. Способы организации канала связи
- •2.4. Характеристики космического сегмента
- •3. Оборудование систем спутниковых телекоммуникаций
- •3.1. Спутниковые антенны
- •3.1.1. Классификация спутниковых антенн
- •3.1.2. Упрощенный расчет диаметра параболической приемной антенны
- •3.1.3. Методика расчета азимутального подвеса
- •3.1.4. Полярный подвес спутниковой антенны и его методика расчета
- •3.1.5. Расчет видимости спутников в данной местности
- •3.1.6. Расчет поворота плоскости поляризации
- •3.1.7. Способы улучшения эксплуатационных характеристик спутниковых антенн
- •3.2. Устройства позиционирования
- •3.3. Коммуникационное оборудование
- •3.3.1. Конверторы спутниковых приемных устройств
- •Классификация конверторов
- •Устройство конвертора
- •3.3.2. Спутниковые ресиверы (приемники)
- •3.3.3. Компьютерные карты
- •3.3.4. Переключатели
- •Вопросы для самопроверки
- •4. Стандарты управления антенными системи и другим коммуникационным оборудованием
- •4.1. Протокол DiSEqC 1.0 – 1.2, 2.0
- •4.2. Протокол miniDiSEqC (Tone Burst)
- •4.3. Протокол DiSEqC 2.0
- •4.4. Протокол DiSEqC 3.0
- •4.5. Технология usals
- •Вопросы для самопроверки
- •5. Проблемы спутникового приема и передачи сигналов
- •6. Особенности организация коллективного приема
- •Словарь терминов спутниковых телекоммуникаций Общая терминология
- •Параметры орбиты космического аппарата (спутника) и его элементов
- •Параметры спутниковой антенны и ее подвески
- •Антенная система
- •Приемное устройство
- •Библиографический список
- •Приложение. Расчет параметров геостационарной орбиты
- •Оглавление
- •1. Введение 3
- •2. Классификация, способы организации и использования ресурсов систем спутниковых телекоммуникаций 17
- •3. Оборудование систем спутниковых телекоммуникаций 28
- •4. Стандарты управления антенными системи и другим коммуникационным оборудованием 58
- •5. Проблемы спутникового приема и передачи сигналов 65
- •6. Особенности организация коллективного приема 65
- •Спутниковые телекоммуникационные технологии
- •603950, Нижний Новгород, ул. Нестерова, 5а
1.2. Направления и перспективы развития спутниковых технологий
Системы спутниковых телекоммуникаций бурно развиваются, что обусловливает интенсивное освоение околоземного космического пространства.
Начальный этап развития спутниковых телекоммуникаций включал в себя два основных направления – телевидение и радиовещание – для реализации двух задач: 1. информационной экспансии; 2. охвата пространства стран, имеющих большие территории, что особенно актуально там, где невозможно никаким другим образом передать сигнал.
Современные системы спутниковых телекоммуникаций ввиду их сложности и дороговизны эксплуатации нацелены на выполнение нескольких задач как гражданского, так и военного назначения. Например, система Inmarsat. Рассмотрим основные направления использования и тенденции развития систем спутниковых телекоммуникаций.
1.3. Телевидение
В Европе спутниковое ТВ стало развиваться в начале 80-х прошлого века, когда появилось новое технологическое решение – передача сигнала из космоса прямо на индивидуальную антенну абонента (реализация непосредственного телевидения НТВ). Первым коммерческим оператором спутникового ТВ стала британская компания Sky (нынешняя BSkyB), через год во Франции появилась Canal Satellite – обе вещали в аналоговом формате. Спустя два года на Ближнем Востоке начала работать первая цифровая спутниковая платформа Orbit. В настоящее время вся информация через спутники передается только в цифровом виде. Бурно развивается и используется спутниковое телевидение высокой четкости.
1.4. Системы навигации
Принцип
работы и использования систем навигации
состоит в определении местоположения
путём измерения моментов времени приема
синхронизированного сигнала от
навигационных спутников до потребителя.
Расстояние вычисляется по времени
задержки распространения сигнала от
посылки его спутником до приёма антенной
навигационного приёмника. Для определения
трёхмерных координат GPS-приёмнику нужно
иметь четыре уравнения: «расстояние
равно произведению скорости света на
разность моментов приема сигнала
потребителя и момента его синхронного
излучения от спутников»:
.
Здесь:
– местоположение j-го
спутника,
–
момент времени приема сигнала от j-го
спутника по часам потребителя,
– неизвестный момент времени синхронного
излучения сигнала всеми спутниками по
часам потребителя,
– скорость света,
– неизвестное трехмерное положение
потребителя.
Рассмотрим существующие системы навигации. Основные параметры этих систем навигации приведены в Табл. 1.1.
Таблица 1.1
Общие параметры спутниковых систем навигации.
Наименование навигационной системы |
Срок ввода в эксплуатацию |
Тип орбиты |
Количество спутников |
GPS |
1973–1995 |
Круговая, высота орбиты 20200 км, период вращения 11 часов 58 минут. Наклонение орбиты 55°, шесть плоскостей по 4 спутника в каждой, равномерно разнесенных по долготе через 60° |
24 основных, 6 резервных |
ГЛОНАСС |
1982–2013 |
Круговая, высота орбиты 19100 км, период вращения – 14 ч 4 мин и 42 с, три орбитальных плоскостях с наклонение орбиты 64,8° |
24 основных, 6 резервных |
GALILEO |
2014–2016 |
Круговая, высота орбиты – 23222 км, период вращения – 14 ч 4 мин и 42 с, три плоскости, наклонение орбиты 56° |
27 основных, 3 резервных |
BeiDou |
2007–2020 |
Геостационарная и круговая высота орбиты - 21500 км, период вращения - 12 ч 53 мин и 2 с, наклонение орбиты 55° |
5 спутников на геостационарной орбите, 30 основных, 5 резервных |
QZSS |
2013 |
Высокоэллиптическая орбита с наклонением 70° |
3 основных |
1.4.1. GPS
В США в стенах Стэнфордского университета [16] после запуска в СССР в 1957 г. первого ИСЗ были начаты исследования по использованию космических аппаратов для навигации подвижных объектов. Первая задачей было определение координат спутников по сигналу спутника и известным координатам места приема этого сигнала на Земле. Решение этой задачи строилось на измерении доплеровского сдвига несущей частоты передатчика и дальнейшего расчета параметров движения спутника.
Для современных систем навигации используется обратная задача – расчет координат приемника спутникового сигнала на основе обработки принятого сигнала и координат ИСЗ. Точность решения зависит от точности синхронизации передатчиков ИСЗ. Для синхронизации передатчиков используют атомные стандарты частоты и времени.
Кроме того, в 1964 г. ВВС США начали программу разработки и испытаний возможностей использования для целей местоопределения широкополосных сигналов, модулированных псевдослучайными шумовыми (PRN) кодами. В 1973 г. программы ВВС и ВМС США были объединены в общую Навигационную технологическую программу, позднее превратившуюся в программу Navstar-GPS. Спутники системы Navstar стали оборудовать стандартами частоты с наибольшей достижимой степенью точности — сначала кварцевым и рубидиевым, затем цезиевым и водородным стандартами. В ходе экспериментов были подобраны оптимальные высоты орбит спутников. В результате высота увеличилась с 925 до 13 тыс. км, а затем — до 20 тыс. км. Изменилась также несущая частота передатчиков: с 400 МГц до 1227-ми и 1575-ти. К 1995 г. система Navstar-GPS была полностью развернута.
В настоящее время точность составляет от 1 см до 15 м. В 2008 г. система GPS полностью введена в эксплуатацию.
