- •1. Определение железобетона. Преимущество и недостатки.
- •3. Классификация бетонов. Механизм разрушения.
- •4. Прочность бетона, ее виды.
- •5. Классы и марки бетона.
- •6. Нарастание прочности бетона во времени.
- •7. Деформативность бетона. Продольные и поперечные деформации.
- •8. Предельные деформации бетона. Модуль деформаций.
- •Бетон, как испытательный материал
- •9. Основные требования, предъявляемые к арматуре ж/б конструкций. Классификация арматуры в жбк.
- •10. Механические свойства арматурных сталей.
- •11. Пластические свойства арматуры.
- •12. Реологические свойства арматуры.
- •13. Хладноломкость. Свариваемость.
- •14. Классы и виды арматурных сталей.
- •15. Сцепление арматуры с бетоном. Анкеровка арматуры.
- •Анкеровка рабочей арматуры в бетоне элемента
- •Анкеровка продольного стержня с помощью специальных устройств
- •Смещение стержней арматуры при соединении без сварки
- •16. Арматурные изделия.
- •17. Особенности производства жбк.
- •18. Группа предельных состояний.
- •19. Нормативные сопротивления бетона.
- •20. Нормативные сопротивления арматуры.
- •21. Расчет изгибаемых элементов прямоугольного сечения с одиночной арматурой.
- •27. Расчет по наклонному сечению на действие поперечной силы
- •Определение момента образования трещин, нормальных к продольной оси элемента
- •39. Расчет по раскрытию трещин
- •Определение момента образования трещин, нормальных к продольной оси элемента
- •Расчет ширины раскрытия трещин, нормальных к продольной оси элемента
- •40. Расчет ж/б элементов по деформации
- •Расчет железобетонных элементов по прогибам
- •41. Кривизна ж/б элементов без трещин и с трещинами в растянутой зоне
10. Механические свойства арматурных сталей.
Характеристики прочности и деформаций арматурных сталей устанавливают по диаграмме, получаемой из испытания образцов на растяжение. Горячекатаная арматурная сталь с площадкой текучести на диаграмме в бетоне растянутой зоны и др. С увеличением числа циклов предел выносливости уменьшается. Термически упрочненные арматурные стали имеют пониженный предел выносливости. Динамическая прочность арматурной стали наблюдается при нагрузках большой интенсивности, действующих на сооружение за весьма короткий промежуток времени. В условиях высокой скорости деформирования арматурные стали работают упруго при напряжениях, превышающих физический предел текучести, при этом происходит запаздывание пластических деформаций. Превышение динамического предела текучести над статическим пределом текучести связано с временем запаздывания. В меньшей степени динамическое упрочнение проявляется на условном пределе текучести сталей легированных и термически упрочненных (не имеющих явно выраженной площадки текучести) и практически совсем не отражается на пределе прочности и всех видов арматурных сталей, в том числе высокопрочной проволоки и изделий из нее. Высокотемпературный нагрев арматурных сталей приводит к изменению структуры металла и снижению прочности. Так, при нагреве до 400 °С предел текучести горячекатаной арматуры класса A-III уменьшается на 30 %, классов А-II и A-I — на 40 %, модуль упругости уменьшается - на 15 %. Заметное проявление ползучести арматуры в конструкциях под нагрузкой наблюдается при температуре свыше 350 °С. При нагреве происходит отжиг и потеря наклепа арматуры, упрочненной холодным деформированием, поэтому временное сопротивление у высокопрочной арматурной проволоки снижается интенсивнее, чем у горячекатаной арматуры. После нагрева и последующего охлаждения прочность горячекатаной арматурной стали восстанавливается полностью, а прочность высокопрочной арматурной проволоки — лишь частично.
11. Пластические свойства арматуры.
Пластические свойства арматурных сталей имеют большое значение для работы железобетонных конструкций под нагрузкой, механизации арматурных работ, удобства натяжения напрягаемой арматуры и др. Арматура а500с обладает пластичностью, однако понижение ее пластических свойств может стать причиной хрупкого (внезапного) разрыва арматуры под нагрузкой. Пластические свойства арматурных сталей В500, В500Схарактеризуются относительным удлинением при испытании на разрыв образцов длиной, равной пяти диаметрам стержня, или 100 мм, а также оцениваются испытанием на загиб в холодном состоянии вокруг оправки толщиной 3—5 диаметров стержня. Высоколегированные и термически упрочненные арматурные стали АТ800, переходят в пластическую область постепенно — без ярко выраженной площадки текучести. Сущность упрочнения холодным деформированием арматуры а1 – а3 состоит в следующем. При искусственной вытяжке в холодном состоянии до напряжения, превышающего предел текучести, под влиянием структурных изменений кристаллической решетки (наклепа) арматурная сталь упрочняется. При повторной вытяжке, поскольку пластические деформации уже выбраны, напряжение становится новым искусственно поднятым пределом текучести. Многократное волочение (через несколько последовательно уменьшающихся в диаметре отверстий) в холодном состоянии позволяет получать высокопрочную проволоку. Чтобы получить структуру арматуры, необходимую для такого холодного волочения, производится патентирование — предварительная термообработка, нагрев до температуры порядка 800 °С с последующим специальным охлаждением. По такой технологии изготовляют высокопрочную арматуру ВР-1, В500С.
