- •Д. К. Тургель
- •1. Основные представления о процессе отделения
- •7. Оборудование для крепления и управления
- •Введение
- •Глава 1
- •Глава 1
- •Глава 1
- •1. Основные представления о процессе отделения горной породы от массива
- •1.1. Способы отделения горной породы от массива
- •Глава 1
- •1.2. Физико-механические свойства горных пород
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •1.3. Породоразрушающий инструмент горных машин
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1 __
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •1.4. Виды и параметры разрушения горной породы резцовым инструментом
- •Глава 1
- •Глава 1
- •1.5. Механизм процесса разрушения пород горным инструментом
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •1.6. Расчет усилий на породоразрушающем инструменте
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •Глава 1
- •2. Функциональные органы горных комбайнов
- •2.1. Органы разрушения горных комбайнов
- •2.1.1. Требования, предъявляемые к органам разрушения, и их классификация
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.1.2. Конструктивное исполнение и выбор основных параметров
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.2. Органы погрузки горных комбайнов
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.3. Органы перемещения горных машин
- •Глава 2
- •2.3.2. Конструктивное исполнение и расчет основных параметров
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.4. Передаточные механизмы горных машин
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.5. Силовое оборудование горных машин
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •Глава 2
- •2.6. Средства борьбы с пылью
- •Глава 2
- •Глава 2
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.3 Перфораторы
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.3.2. Погружные пневмоударники
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3,3.5. Бурильные головки
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.4. Шахтные бурильные установки
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3 ____
- •Глава 3
- •Глава 3
- •3.5. Буровые станки
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •Глава 3
- •3.8. Перспективы развития буровой техники
- •4. Погрузочные, буропогрузочные и погрузочно-транспортные машины
- •4.1. Классификация породопогрузочных машин
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •Глава 4
- •5. Проходческие комбайны
- •5.1. Классификация и требования, предъявляемые к проходческим комбайнам
- •Глава 5
- •5.2. Стреловые проходческие комбайны
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5 __
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5 __
- •Глава 5
- •5.6. Устойчивость проходческих комбайнов
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •Глава 5
- •6. Очистные комбайны
- •6.1. Классификация и требования, предъявляемые к очистным комбайнам
- •Глава 6
- •Глава 6
- •Глава 6
- •Глава 6
- •Глава 6
- •Глава 6
- •Глава 6
- •6.4. Расчет устойчивости очистных комбайнов
- •Глава 6
- •Глава 6
- •Глава 6
- •Глава 6
- •7. Оборудование для крепления и управления кровлей в очистном забое
- •7.1. Классификация и требования, предъявляемые к механизированным крепям
- •Глава 7 _____
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •7.3. Выбор параметров механизированных крепей
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •Глава 7
- •8. Очистные и проходческие комплексы и агрегаты
- •8.1. Классификация очистных и проходческих комплексов
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •Глава 8
- •9. Оборудование для гидравлической добычи угля
- •Глава 9
- •9.1. Технологические схемы гидрошахт
- •Глава 9
- •Глава 9
- •9.2. Гидромониторы
- •Глава 9
- •Глава 9
- •Глава 9
- •9.3. Механогидравлические комбайны
- •Периодические издания
- •7. Оборудование для крепления и управления
- •620144, Г. Екатеринбург, ул. Куйбышева, 30.
Глава 9
9.1. Технологические схемы гидрошахт
Выемка угля в очистных забоях при некрепких углях осуществляется гидравлическим способом, при крепких - механогидравлическим с помощью комбайнов. Транспортирование пульпы по горным выработкам с уклоном 0,05 - 0,07 в сторону ствола осуществляется самотечным транспортом по металлическим желобам. При таком уклоне горной выработки рельсовый транспорт не применяется. Поэтому материалы доставляются подвесными канатными или монорельсовыми дорогами. В некоторых случаях наряду с самотечным гидротранспортом применяют напорный гидротранспорт по пульпопроводу посредством углесоса (например, в пределах панели - самотечный гидротранспорт, по остальным выработкам шахты - напорный).
Гидроподъем из неглубоких шахт производится углесосами, из глубоких (более 400 м) - эрлифтами, а также питателями. В зависимости от способа гидроподъема различаются и технологические схемы шахт.
На рис. 9.1 приведена технологическая схема гидрошахты, оборудованной гидроподъемом с помощью эрлифта. Из резервуара технической воды 3 высоконапорные насосы 2 забирают осветленную воду и по трубопроводу 1 нагнетают ее в шахту к гидромониторам 19, расположенным в очистных забоях. Разрушенный гидромонитором уголь смывается потоком
289
Глава 9
отработанной воды. Образовавшаяся пульпа по металлическим желобам 18, уложенным в выработке с уклоном в сторону ствола, поступает самотеком в участковую углесосную станцию. Здесь пульпа пропускается через грохот 17, на котором отбираются негабаритные куски угля крупностью более 100 мм в поперечнике. Негабаритные куски, пройдя дробилку 16, поступают в пульпосборник 15. Процесс нульпообразования регулируется специальным всасывающим устройством, которое обеспечивает заданную консистенцию (состав) пульпы, обычно Т:Ж=1:5.
Из участковой углесосной станции пульпа перекачивается углесосом 14 по напорному пульпопроводу 13, проложенному по выработкам, в расположенный в нижней части ствола зумпф 12 глубиной 90 м. Отсюда посредством эрлифта производительностью до 2000 м3/ч пульпа поднимается на поверхность. Сначала пульпа из зумпфа 12 через трубу 11 поступает в смеситель 10, вмонтированный непосредственно в пульпопровод. В этот же смеситель по трубе 9 подается сжатый воздух от турбокомпрессорной станции 6, установленной на поверхности. Пузырьки воздуха, поднимаясь из смесителя по пульпопроводу 8, увлекают за собой пульпу и выносят ее непрерывным потоком на поверхность в воздухоотделитель 7, установленный на копре. Отсюда пульпа по двум наклонным трубопроводам 5 поступает самотеком на обогатительную фабрику 4. Отработанная вода из обогатительной фабрики сливается в систему отстойников, а из них - в резервуар осветленной технической воды 3. Таким образом, вода используется многократно в замкнутом цикле. Потери воды периодически компенсируются из шахтного водопровода.
В зависимости от высоты гидроподъема пульпопровод 8 эрлифта может состоять не из одного става, а из нескольких, последовательно расположенных с камерами смесителя.
Преимуществами эрлифта являются простота конструкции, возможность гидроподъема с больших глубин и регулирования производительности, отсутствие измельчения угля.
К недостаткам эрлифта относятся большая энергоемкость (примерно в 1,5 раза большая, чем при углесосах), низкий КПД (=0,4), необходимость дополнительной углубки ствола для размещения петли эрлифта, если он применяется без комбинации с углесосом, и большие капитальные затраты.
Сотрудниками МГГУ и НПО „Гидроуголь" предложена новая эффективная, экологически чистая механогидравлическая технология добычи угля. В основу этой технологии положена подземная замкнутая гидротрансиортная система, исключающая наличие прудов-отстойников и каких-либо сбросов в открытые водоемы на поверхности шахты. Такая технологическая схема (рис. 9.2) предусматривает выемку угля в забое механогидравлическим способом комбайнами 1 (КПА - 3 или КПА - ЗМ) на опорно-шагающем ходу. Технологическая вода для гидротранспорта пульпы из забоя по желобам 2 забирается низконапорным насосом 4 из подземного замкнутого комплекса обезвоживания 5 и осветления технологической воды 6 и по низконапорным трубопроводом 3 подается опять в забой. Выдача обезвоженного угля из шахты осуществляется конвейером 7 по бремсбергу и эстакадным конвейером 8 на промежуточный угольный склад 9.
290
