Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теплотехники. Техническая термодинамика_...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.32 Mб
Скачать

3.7. Связь работы обратимого процесса с эксергией. Потеря эксергии реальных процессов

Д ля обратимого процесса расширения рабочего тела 1-2 (рис. 3.11) можно записать следующие уравнения:

,

(3.20)

,

(3.21)

.

(3.22)

Совместное их решение дает формулу

,

(3.23)

согласно которой работа любого обратимого процесса определяется значениями эксергий начального и конечного состояний и эксергией теплоты процесса.

Реальные процессы необратимы. В процессах расширения получается меньшая работа (lд < l). Разность работ обратимого (l) и необратимого (lд) процессов представляет собой потерю эксергии

.

(3.24)

Для процессов расширения и сжатия справедливо выражение

.

(3.25)

Формулы (3.12), (3.19), (3.25) лежат в основе эксергетического анализа процессов и циклов тепловых двигателей и аппаратов.

3.8. Эксергетический кпд

Эксергетический КПД теплового двигателя или аппарата учитывает все потери данного устройства и рассчитывается по формуле

,

(3.26)

где exподв – затраченная энергия, полностью превратимая в другие виды энергии, exотв – полученная (полезная) энергия.

Разность между ними представляет собой потерю эксергии

.

(3.27)

С учетом выражения (3.27) формулу (3.26) можно представить в следующем виде:

.

(3.28)

Эксергетический КПД является характеристикой термодинамического совершенства реальных процессов и циклов, протекающих в энергетическом оборудовании.

3.9. Методические указания

1. Теплота и работа представляют собой формы передачи энергии и могут переходить друг в друга. Работа (механическая энергия) полностью превращается в теплоту. Теплоту же полностью превратить в механическую энергию нельзя. На вопрос, «какую часть теплоты можно превратить в работу?», дает ответ второй закон термодинамики. Этот закон также определяет направление естественных процессов (формулировки Клазиуса, Больцмана) и характеризует качественную сторону процессов преобразования теплоты в работу. Показателем качества тепла является эксергия.

В отличие от первого закона термодинамики, являющегося абсолютным законом природы, справедливым как для макромира, так и для микромира, второй закон термодинамики получен на основании опыта для макросистем в условиях Земли и не может произвольно распространяться как на бесконечную Вселенную, так и на микромир.

2. Обратите внимание: для обратимого цикла Карно температура горячего источника (Tги) и температура подвода теплоты к рабочему телу (T1) совпадают - Tги = T1; температура холодного источника (Tхи) и температура отвода теплоты от рабочего тела (T2) совпадают - Tхи = T2. Следовательно, процессы теплообмена между рабочим телом и источниками тепла – внешне обратимые.

Адиабатные процессы сжатия и расширения рабочего тела – внутренне обратимые (без трения).

В реальных циклах все эти процессы необратимы.

3.10. Вопросы и задачи

1. В чем суть известной в философии концепции “тепловой смерти Вселенной” с позиций второго закона термодинамики?

2. Назовите известные Вам формулировки второго закона термодинамики и запишите его математическое выражение для обратимых и необратимых процессов.

3. Что такое эксергия? Можно ли утверждать, что потеря эксергии определяет уменьшение работоспособности термодинамической системы?

4. Дайте понятия термического и эксергетического КПД. Могут ли эти КПД быть равными единице, и при каких условиях?

5. Чтобы испарить 1 кг кипящей воды при давлении 760 мм рт. ст., необходимо подвести 2257 кДж/кг теплоты. Рассчитайте изменение энтропии в этом процессе. Какова эксергия подводимой теплоты, если температура окружающей среды равна 20 0С?

6. В паровом котле теплота в количестве 1000 МВт передается от дымовых газов с температурой 2000 0С к воде и водяному пару со средней температурой 350 0С. Рассчитайте потерю эксергии, если температура окружающей среды равна 0 0С.

7. Для цикла Карно известны: температура подвода тепла 500 0С, температура отвода тепла 20 0С, работа цикла l = 820 кДж/кг. Рассчитайте подводимую теплоту (q1)и изменение энтропии в цикле (s).