Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Основы теплотехники. Техническая термодинамика_...doc
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
5.32 Mб
Скачать

6.8. Необратимое истечение

В реальных условиях, вследствие трения потока о стенки канала, процесс истечения является необратимым. За счет теплоты трения энтропия рабочего тела возрастает.

Н а рис. 6.8 представлены обратимый (1-2) и необратимый (1-2д) процессы истечения водяного пара из сопла.

Для обратимого процесса истечения скорость на выходе из сопла равна

.

(6.26)

В действительном процессе при том же перепаде давлений расходуется меньшая разность энтальпий (h1-h), в результате уменьшается скорость истечения, т.к. часть кинетической энергии, благодаря трению, переходит в теплоту

.

(6.27)

Отношение c/c2 = называется скоростным коэффициентом. Для паровых и газовых турбин экспериментальные данные показывают, что = 0,92-0,98. Совместное решение (6.26) и (6.27) дает формулу для расчета потери кинетической энергии в действительном процессе истечения

.

(6.28)

Отношение , где (h1 - h2) – располагаемый тепловой перепад, называется коэффициентом потери энергии. Для паровых и газовых турбин = 4…5 %.

Коэффициент потери энергии и скоростной коэффициент взаимосвязаны.

Для сопел паровых и газовых турбин при c1 = 0 эта связь имеет вид

.

(6.29)

Совместное решение (6.28) и (6.29) с учетом дает формулу для расчета энтальпии на выходе из сопла

.

(6.30)

Площадь выходного сечения сопла рассчитывается по уравнению неразрывности потока

.

(6.31)

Удельный объем v определяется по известным значениям параметров p2, h. Для сопел Лаваля действительное значение энтальпии в минимальном сечении сопла (hkpд) и его площадь (fmin) рассчитываются по аналогичным формулам:

,

(6.32)

,

(6.33)

где vkpд, ckpд – действительные значения удельного объема и критической скорости в минимальном сечении сопла.

Необратимый процесс расширения рабочего тела при истечении из сопла (1-2д) сопровождается увеличением энтропии (sH) и потерей эксергии (exпот):

,

(6.34)

.

(6.35)

6.9. Дросселирование газов и паров

Дросселирование – это эффект падения давления при преодолении потоком рабочего тела сопротивления, например: частично открытого вентиля, задвижки, шибера, пористой стенки (рис. 6.9).

Д анный процесс является необратимым адиабатным (dq = 0, dsH > 0), в котором полезная работа не совершается, а изменение кинетической энергии пренебрежимо мало.

Согласно уравнения первого закона термодинамики (6.2) при : h1 = h2, т.е. энтальпия рабочего тела в процессе дросселирования не изменяется.

Таким образом, при дросселировании рабочего тела:

  • давление уменьшается (dp < 0);

  • энтальпия не изменяется (dh = 0);

  • энтропия увеличивается (ds > 0);

  • удельный объем увеличивается (dv > 0).

При дросселировании идеального газа температура не изменяется (dT = 0), т.к. h = f(T).

При дросселировании реальных газов и паров температура может увеличиваться, уменьшаться или не изменяться для одного и того же рабочего тела. Это зависит от параметров, при которых газ либо пар дросселируются.

Изменение температуры реальных газов и паров характеризуется дифференциальным эффектом дросселирования: .

При h > 0 – температура уменьшается (dT < 0).

При h < 0 – температура увеличивается (dT > 0).

При h = 0 – температура не изменяется (dT = 0).

Состояние рабочего тела, в котором h = 0, называется точкой инверсии, а соответствующая ей температура – температурой инверсии (Tинв). При атмосферном давлении для: водорода - tинв = -57 0С, гелия - tинв = -239 0С, водяного пара - tинв = 4097 0С. При температурах t < tинв температура рабочего тела в процессе дросселирования уменьшается.

Н а рис. 6.10 показан процесс дросселирования перегретого пара в h-s- диаграмме, его температура уменьшается (t2 < t1).

Дросселирование является необратимым процессом, протекающим с увеличением энтропии и с потерей эксергии, которые можно рассчитать по формулам sH==s2-s1 и (6.35).

Адиабатное дросселирование используется в технике для получения низких температур и сжижения газов. В измерительной технике процессы дросселирования лежат в основе методов определения расхода жидкости или газа, степени сухости паров. Этот эффект иногда используется для уменьшения мощности тепловых двигателей.

Н а рис. 6.11 показан обратимый адиабатный процесс расширения рабочего пара от p1 до p2 в паровой турбине.

Работа данного процесса равна l = h1h2.

После дросселирования пара в задвижке до давления p работа обратимого адиабатного процесса расширения уменьшилась , следовательно, уменьшилась мощность турбины.