- •26 Особенности схем преобразователей напряжения постоянного тока.
- •27 Общие сведения о стабилизаторах.
- •Линейный стабилизатор
- •Параллельный параметрический стабилизатор на стабилитроне
- •Последовательный стабилизатор на биполярном транзисторе
- •28 Схемы стабилизаторов напряжения постоянного и переменного тока.
- •Стабилизаторы переменного напряжения Феррорезонансные стабилизаторы
- •Современные стабилизаторы
- •29 Виды источников электроснабжения предприятий связи.
28 Схемы стабилизаторов напряжения постоянного и переменного тока.
Очень простыми получаются стабилизаторы постоянного тока с использованием полевых транзисторов (рис. 4.26). Ток нагрузки протекает через резистор R1. Ток, протекающий в цепи: плюс источника, сток-затвор полевого транзистора, резистор Rн, минус источника питания, очень мал, так как переход сток – затвор транзистора смещен в обратном направлении. Напряжение на резисторе R1 имеет полярность плюс слева, минус справа. Потенциал затвора равен потенциалу правого вывода резистора R1, следовательно, потенциал затвора относительно истока будет отрицательным. При уменьшении сопротивления нагрузки ток через резистор R1 стремится увеличиться, в результате чего потенциал затвора относительно истока становится более отрицательным и транзистор закрывается в большей степени. При большем закрытии транзистора VT1 ток через нагрузку уменьшается, стремясь к своему первоначальному значению.
Стабилизаторы переменного напряжения Феррорезонансные стабилизаторы
Феррорезонансный стабилизатор для питания цветных ламповых телевизоров, СССР, 1970-е — 1980-е гг.
Во времена СССР получили широкое распространение бытовые феррорезонансные стабилизаторы напряжения. Обычно через них подключали телевизоры. В телевизорах первых поколений применялись сетевые блоки питания с линейными стабилизаторами напряжения (а некоторые цепи и вовсе питались нестабилизированным напряжением), которые не всегда справлялись с колебаниями напряжения сети, особенно в сельской местности, что требовало предварительной стабилизации напряжения. С появлением телевизоров 4УПИЦТ и УСЦТ, имевшихимпульсные блоки питания, необходимость в дополнительной стабилизации напряжения сети отпала.
Феррорезонансный стабилизатор состоит из двух дросселей: с ненасыщаемым сердечником (имеющим магнитный зазор) и насыщенным, а также конденсатора. Особенность ВАХ насыщенного дросселя в том, что напряжение на нём мало изменяется при изменении тока через него. Подбором параметров дросселей и конденсаторов можно обеспечить стабилизацию напряжения при изменении входного напряжения в достаточно широких пределах, но незначительное отклонение частоты питающей сети очень сильно влияло на характеристики стабилизатора.
Современные стабилизаторы
В настоящее время основными типами стабилизаторов являются:
электродинамические
сервоприводные (механические)
электронные (ступенчатого типа)
статические (электронные переключаемые)
релейные
компенсационные (электронные плавные)
комбинированные (гибридные)
Модели производятся как в однофазном (220/230 В), так и трёхфазном (380/400 В) исполнении, мощность их от нескольких сотен ватт до нескольких мегаватт. Трёхфазные модели выпускаются двух модификаций: с независимой регулировкой по каждой фазе или с регулировкой по среднефазному напряжению на входе стабилизатора.
Выпускаемые модели также различаются по допустимому диапазону изменения входного напряжения, который может быть, например, таким: ±15 %, ±20 %, ±25 %, ±30 %, −25 %/+15 %, −35 %/+15 % или −45 %/+15 %. Чем шире диапазон (особенно в отрицательную сторону), тем больше габариты стабилизатора и выше его стоимость при той же выходной мощности.
Важной характеристикой стабилизатора напряжения является его быстродействие, то есть чем выше быстродействие, тем быстрее стабилизатор отреагирует на изменения входного напряжения. Быстродействие это промежуток времени (миллисекунды) за которое стабилизатор способен изменить напряжение на один вольт. У разного типа стабилизаторов разная скорость быстродействия, например у электродинамических быстродействие 8…10 мс/В, статические стабилизаторы обеспечат 2 мс/В, а вот у электронных, компенсационного типа этот параметр 0,75 мс/В.
Ещё одним важным параметром является точность стабилизации выходного напряжения. Согласно ГОСТ 13109-97 предельно допустимое отклонение напряжения питания ±10 % от номинального. Точность современных стабилизаторов напряжения колеблется в диапазоне от 0,5 % до 8 %. Точности в 8 % вполне хватает для обеспечения исправной работы подавляющего большинства современной бытовой и промышленной электротехники оборудованных инверторными и импульсными блоками питания. Так как мощность оборудования напрямую зависит от напряжения, то для обеспечения корректной (заявленной производителем) работы с прогнозируемым результатом и расходом электроэнергии необходимо точное напряжения (0,5-1 %). Так же более жесткие требования (1 %) предъявляются для питания сложного оборудования (медицинское, высокотехнологичное и подобное). Важным потребительским параметром является способность стабилизатора работать на заявленной мощности во всем диапазоне входного напряжения, но далеко не все стабилизаторы соответствуют этому параметру. КПД электродинамических и сервоприводных стабилизаторов более 98 %, а электронных (ступенчатых) 96 %. Электродинамические стабилизаторы выдерживают десятикратные перегрузки, при покупке такого стабилизатора запас по мощности не требуется.
