- •Понятие равновесного термодинамического процесса. Изображение различных термодинамических процессов в диаграммах состояния.
- •Уравнение состояния идеального газа. Физический смысл газовой постоянной.
- •Внутренняя энергия идеального и реального газа. Свойства идеального газа.
- •Понятие теплоты и работы в термодинамике. Основное сходство и различие понятий.
- •5)Аналитическое выражение первого закона термодинамики для равновесных и неравновесных процессов.
- •6) Физический смысл и свойства энтальпии идеального газа.
- •7) Теплоемкость идеального газа. Зависимость теплоемкости от термических параметров состояния.
- •8. Зависимость теплоемкости идеального газа от характера процесса. Уравнение Майера.
- •9. Способы задания состава газовых смесей. Газовая постоянная и молекулярная масса смеси.
- •10. Газовые смеси. Закон Дальтона, теплоемкость смеси.
- •11. Уравнение первого закона термодинамики для потока газа. Понятие технической работы. Первый закон термодинамики для потока
- •12. Понятие энтропии идеального газа. Свойства энтропии.
- •13. Тепловая диаграмма. Изображение термодинамических процессов в тепловой диаграмме
- •14. Политропный процесс для идеального газа. Теплоемкость политропного процесса. Политропные процессы
- •Уравнение процесса
- •Теплоемкость политропных процессов
- •15. Изотермический процесс для идеального газа.
- •16. Изобарный процесс для идеального газа.
- •17. Изохорный процесс для идеального газа.
- •18. Адиабатный процесс. Показатель адиабаты.
- •19. Сущность второго закона термодинамики. Формулировка. Понятие теплового двигателя.
- •100% Энергии не может быть преобразовано в работу
- •Эффективность теплового двигателя
- •20. Термодинамический цикл. Термический кпд цикла.
- •Термический кпд тепловых машин
- •21. Сравнение термического кпд произвольного цикла и термического кпд цикла Карно. Регенеративный цикл Карно.
- •Регенеративный (обобщенный) цикл Карно
- •22. Изменение энтропии в необратимых процессах. H-s диаграмма необратимого адиабатного процесса.
- •23. Энтропия изолированной системы. Физический смысл энтропии.
- •24. Второй закон термодинамики для обратимых и необратимых процессов.
- •27. Цикл двс со смешанным подводом теплоты(изохорно-изобарный цикл),его термодинамический кпд.
- •28. Сравнение эффективности циклов двс
- •31. Классификация видов теплообмена.
- •32. Закон Фурье.
- •33. Коэффициент теплопроводности. Физический смысл. Свойства.
- •34. Дифференциальное уравнение теплопроводности.
- •35. Граничные условия 1-го и второго рода.
- •41. Теплопроводность цилиндрической стенки в граничных условиях 1-го рода.
- •42. Теплопроводность цилиндрической стенки в граничных условиях 3-го рода.
20. Термодинамический цикл. Термический кпд цикла.
Термодинамические циклы — круговые процессы в термодинамике, то есть такие процессы, в которых начальные и конечные параметры, определяющие состояние рабочего тела (давление, объём, температура, энтропия), совпадают.
Термодинамические циклы являются моделями процессов, происходящих в реальных тепловых машинах для превращения тепла в механическую работу.
Компонентами любой тепловой машины являются рабочее тело, нагреватель и холодильник (с помощью которых меняется состояние рабочего тела).
Обратимым называют цикл, который можно провести как в прямом, так и в обратном направлении в замкнутой системе. Суммарная энтропия системы при прохождении такого цикла не меняется. Единственным обратимым циклом для машины, в которой передача тепла осуществляется только между рабочим телом, нагревателем и холодильником, является Цикл Карно. Существуют также другие циклы (например, цикл Стирлинга и цикл Эрикссона), в которых обратимость достигается путём введения дополнительного теплового резервуара — регенератора. Общим (т.е. указанные циклы частный случай) для всех этих циклов с регенерацией является Цикл Рейтлингера. Можно показать (см. статью Цикл Карно), что обратимые циклы обладают наибольшей эффективностью.
Прямое преобразование тепловой энергии в работу запрещается постулатом Томсона (Второе начало термодинамики). Поэтому для этой цели используются термодинамические циклы.
Для
того, чтобы управлять состоянием рабочего
тела, в тепловую машину входят нагреватель
и холодильник. В каждом цикле рабочее
тело забирает некоторое количество
теплоты (
)
у нагревателя и отдаёт количество
теплоты
холодильнику.
Работа, совершённая тепловой машиной
в цикле, равна, таким образом,
,
так
как изменение внутренней энергии
в
круговом процессе равно нулю (это функция
состояния).
Напомним, что работа не является функцией состояния, иначе суммарная работа за цикл также была бы равна нулю.
При этом нагреватель потратил энергию . Поэтому тепловой, или, как его ещё называют, термический или термодинамический коэффициент полезного действия тепловой машины (отношение полезной работы к затраченной тепловой энергии) равен
.
Термический кпд тепловых машин
Термический КПД тепловых машин рассмотрим на примере работы двигателя внутреннего сгорания с подводом теплоты при постоянном объеме, термодинамический цикл которого состоит из следующих процессов (рис. 2): 1-2 - изохорический подвод теплоты при сгорании топлива в цилиндре двигателя; 2-3 - адиабатическое расширение рабочего тела; 3-4 - изохорический отвод теплоты при выбросе отработанного газа в атмосферу; 4-1 - адиабатическое сжатие рабочего
тела [2]. Обратим внимание на принципиальное отличие процесса от цикла Карно - отсутствие охладителя, и рабочая смесь приводится в первоначальное состояние загрузкой новой его порции. Руководствуясь формулой (1), записывается значение термического КПД:
рис. 2. Термодинамический цикл двигателя внутреннего сгорания
21. Сравнение термического кпд произвольного цикла и термического кпд цикла Карно. Регенеративный цикл Карно.
Коэффициент полезного действия тепловой машины Карно равен
.
