Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
мои ответы статистика.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
205.64 Кб
Скачать

36. Понятие о малой выборке

Малой выборкой называется такое выборочное наблюдение, численность единиц которого не превышает 30.

Разработка теории малой выборки была начата английским статистиком В.С.Госсетом ( псевдоним Стьюдент). Он доказал, что оценка расхождений между средней малой выборки и генеральной средней имеет особый закон распределения.

При оценке результатов малой выборки величина генеральной совокупности не используется. Для определения возможных пределов ошибки используется критерий Стьюдента, определяемый по формуле:

- средняя ошибка малой выборки.

Величина  вычисляется на основе данных выборочного наблюдения. Она равна:

Предельная ошибка малой выборки в зависимости от средней ошибки определяется следующим образом:

.

Для малой выборки величина коэффициента доверия (критерия t) по-другому связана с вероятностной оценкой, чем при большой выборке, так как закон распределения отличается от нормального.

37. Динамические ряды: понятие и их характеристика

Ряды динамики - это значения статистических показателей, которые представлены в определенной хронологической последовательности. Каждый динамический ряд содержит две составляющие: 1) показатели периодов времени (годы, кварталы, месяцы, дни или даты); 2) показатели, характеризующие исследуемый объект за временные периоды или на соответствующие даты, которые называют уровнями ряда. Уровни ряда выражаются как абсолютными, так и средними или относительными величинами. В зависимости от характера показателей строят динамические ряды абсолютных, относительных и средних величин. Ряды динамики из относительных и средних величин строят на основе производных рядов абсолютных величин. Различают интервальные и моментные ряды динамики. Динамический интервальный ряд содержит значения показателей за определенные периоды времени. В интервальном ряду уровни можно суммировать, получая объем явления за более длительный период, или так называемые накопленные итоги Динамический моментный ряд отражает значения показателей на определенный момент времени (дату времени). В моментных рядах исследователя может интересовать только разность явлений, отражающая изменение уровня ряда между определенными датами, поскольку сумма уровней здесь не имеет реального содержания. Накопленные итоги здесь не рассчитываются.

38. Сопоставимость уровней и смыкание рядов динамики

Сопоставимость — это сравнимость показателей во времени.

Условия сопоставимости уровней ряда динамики: 1) Должна быть обеспечена одинаковая полнота охвата различных частей явления. Уровни динамического ряда за отдельные периоды времени должны харкт-вать размер явления по одному и тому же кругу, входящий в его состав частей. 2) при определении сравниваемых уровней ряда динамики необх. использовать единую методологию их расчета. 3)Равенство периодов, за к-рые приводятся данные. 4)Необходимо использовать одинаковые единицы измерения. При харак-ки  стоимостных показателей во времени долж. б. устранено влияние изменение цен необх. оценка изучаемого показ-ля в ценах одного периода (в сопоставимых ценах) 5)Исходя из цели исследов-ия данные по тер-риям, границы которые изменились долж. б. пересчитаны в старых пределах. Для приведения уровней ряда дин-ки к сопоставимому виду использ. прием, который наз-ся смыкание рядов динамики. Смыкание – объединение в один ряд двух или нескольких рядов динам., уровни которых исчислены по разной методике или разными территориальными границами. Чтобы произвести смыкание рядов необходимо, чтобы для одного из периодов (переходного)  имелись данные, рассчитанные по разной методике или в разных границах. 39. Система аналитических показателей динамического ряда

Исследование динамического ряда осуществляется в несколько этапов:

- определение степени изменчивости отдельных уровней ряда и их сопоставление с уровнями, отстоящими на один промежуток времени;

- расчет средних значений показателей, образующих ряд динамики;

- определение перечня факторов, под воздействием которых происходит изменение уровней ряда;

- отображение основной закономерности развития (тенденции) изучаемого явления;

- выявление вероятных путей и результатов развития явления

Для каждого этапа анализа динамического ряда разработаны специальные показатели.

Определение степени изменчивости отдельных уровней ряда - Показатели, позволяющие сравнивать уровни ряда, можно разделить на абсолютные и относительные: первые отображают разницу, а вторые – отношение между уровнями ряда динамики.

Определение средней изменчивости динамического ряда - Ряды динамики, образованные признаками, изменчивость которых складывается только под воздействием случайных величин, на практике почти не анализируются. Такие ряды называются стационарными и исследуются с помощью теории стационарных случайных процессов. Поэтому, при анализе изменчивости признака во времени, необходимо прослеживать и изменение его средней величины.

Определение основной закономерности развития явления - Включение времени в качестве фактора анализа предполагает возможность отображения через него влияния всех других факторов. Однако, воздействие прочих факторов в каждый период времени неравномерно, что выражается в колебаниях значений уровней ряда. Устранение случайного, кратковременного влияния, выявление основной закономерности развития процесса является важнейшим этапом анализа динамических рядов.

Характеристика сезонной неравномерности - Сезонность – изменения динамических рядов, имеющих внутригодичную цикличность, зависящие от календарного периода года, явлениями природы, праздниками и др. Например, объем продаж продукции меховой фабрики вырастет в октябре, в ноябре достигнет максимума, снизится к марту, и затем до сентября-октября будет держаться на очень низком уровне.

Прогнозирование динамических рядов - При исследовании динамики социально-экономических процессов очень часто необходимо сопоставить их изменчивость во времени. Взаимосвязь между явлениями в статистике исследуется в два этапа:

1. Выявление формы связи и ее параметров

2. Определение степени тесноты связи

Показатели, характеризующие взаимосвязь между явлениями, делятся на две группы:

- коэффициенты, рассчитанные для двух явлений

- коэффициенты, рассчитанные для трех и более явлений