Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
числаки_минимум_на_экз.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
799.97 Кб
Скачать

16. Вычисление двойных интегралов. Формула Симпсона.

Вычислить

.

Область интегрирования здесь – прямоугольник со сторонами и (рис. 12.2). Применим формулу Симпсона, вычисляя определенный интеграл сначала по , затем по .

Рис. 12.2. Область интегрирования

Пусть

,

и

.

Тогда

Для повышения точности вычислений область покрывается сетью прямоугольников. В этом случае

,

и значение двойного интеграла вычисляется в виде

где

.

Если – криволинейная область, то для применения полученной формулы Симпсона область заключают в прямоугольник и пользуются вспомогательной функцией

Тогда

и для вычисления последнего интеграла привлекают метод Симпсона.

17. Соду. Явный метод Эйлера. Условие устойчивости. (методичка)

      1. Явный метод Эйлера.

Рассмотрим , где , – текущий шаг интегрирования. Разложим функцию в ряд Тейлора в окрестности точки :

.

Ограничившись в этом разложении двумя членами, получим разност-ную схему метода Эйлера

.

Локальная погрешность метода Эйлера составляет величину

.

В вычислительной математике численные методы решения обык-новенных дифференциальных уравнений принято характеризовать порядком точности.

Определение. Если локальная погрешность численного метода ,то порядок точности такого метода равен .

Метод Эйлера является методом первого порядка.

Приведем геометрическую интерпретацию явного метода Эйлера для задачи Коши

(см. рис. 13.2). Приращение на шаге интегрирования – катет прямоугольного треугольника, лежащий против угла, тангенс которого равен значению производной в предыдущий момент времени. Вторым катетом этого треугольника является текущий шаг интегрирования.

t

u

u0

t1

t0

y0

τ

y1

Рис. 13.2. Геометрическая иллюстрация явного метода Эйлера

Оценим устойчивость метода Эйлера по отношению к шагу ин-

тегрирования. Для этого рассмотрим линейную автономную систему

с отрицательно определенной матрицей простой структуры. Отрицательная определенность матрицы означает, что все собствен-ные значения матрицы действительны и отрицательны, т. е. . В этом случае все решения .

Применим для решения этой системы метод Эйлера с постоянным шагом :

.

Здесь Eединичная матрица соответствующей размерности.

Из алгебры известно, что для любой неособенной матрицы простой структуры существует такая неособенная матрица , которая преобразованием подобия приводит матрицу к диагональному виду:

.

Преобразуем вычислительную схему метода Эйлера следующим образом:

.

Введем замену переменных . Тогда

,

или

.

Запишем это соотношение для i-й компоненты вектора :

,

или

,

где , т. е. определяется начальным условием.

Нетрудно видеть, что

,

если . Именно этим свойством обладает решение автономной системы с отрицательно определенной матрицей. Отсюда приходим к требованиям

,

при этом неравенство приводит к естественному условию , т. к. , а неравенство  к условию

.

Очевидно, чтобы , необходимо при выборе шага интегрирования выполнить условие

.

Таким образом, явный метод Эйлера по отношению к шагу интегрирования является условно устойчивым.