- •Естествознание как отрасль научного познания. Классификация наук. (плюс то, что у вас в лекциях)
- •Прикладные и фундаментальные науки.
- •7. Наука. Зарождение науки.
- •8. Древнегреческий период развития естествознания.
- •9. Эллинистически-римский период развития естествознания.
- •10. Геоцентрическая система Птолемея.
- •11. Развитие естествознания в средневековье.
- •12. Научные революции в истории общества.
- •13. Коперниканская научная революция.
- •14. Научная революция 17 в. Создание классической механики.
- •15. Изучение магнитных и электрических явлений в 18-19 вв.
- •1.1 Формирование понятия электромагнитного поля
- •16. Развитие представлений о природе света в 18-19 вв.
- •17. Теплородная и кинетическая теория теплоты.
- •19. Первое и второе начала термодинамики. Закон возрастания энтропии.
- •Формулировка теоремы
- •20. Статистическая физика.
- •21. Великие открытия, которые привели к научной революции на рубеже 19-20 вв.
- •22. Создание Энштейном специальной теории относительности.
- •23. Создание и развитие общей теории относительности.
- •24. Возникновение и развитие квантовой физики.
- •25. Основные положения квантовой механики.
- •26. Фундаментальные физические взаимодействия.
- •27. Классификация элементарных частиц.
- •28. Лептоны
- •29. Адроны
- •30. Частицы – переносчики взаимодействий.
- •31. Теория эволюции Ламарка
- •32. Катастрофизм.
- •33. Дарвинизм.
- •Основные факторы эволюции по Дарвину
- •34. Современные представления об эволюции.
- •35. Теории возникновения жизни на Земле
- •36. Теория биохимической эволюции
- •37. Биологическая эволюция человека
- •38. Социальная эволюция человека
- •39. Небулярная гипотеза Канта-Лапласа.
- •40. Солнечная система и ее происхождение.
- •41. Звезды, эволюция звезд
- •42. Эволюция Вселенной.
- •43. Экология. Объект изучения экологии.
- •44. Абиотические компоненты экосистемы.
- •45. Биотические компоненты экосистемы.
- •46. Пищевые цепи
- •47. Экологическая ниша.
- •48. Динамика популяций.
- •49. Круговорот веществ в экосистеме.
- •50. Рост численности населения на Земле.
- •51. Ресурсы и деградация окружающей среды.
- •52. Загрязнение окружающей среды.
25. Основные положения квантовой механики.
Ква́нтовая меха́ника — раздел теоретической физики, описывающий физические явления, в которых действие сравнимо по величине с постоянной Планка. Предсказания квантовой механики могут существенно отличаться от предсказаний классической механики. Поскольку постоянная Планка является чрезвычайно малой величиной по сравнению с действием макроскопических объектов, квантовые эффекты в основном проявляются в микроскопических масштабах. Если физическое действие системы намного больше постоянной Планка, квантовая механика органически переходит в классическую механику. В свою очередь, квантовая механика является нерелятивистским приближением (то есть приближением малых энергий по сравнению с энергией покоя массивных частиц системы) квантовой теории поля.
Классическая механика, хорошо описывающая системы макроскопических масштабов, не способна описать все явления на уровне молекул, атомов, электронов и фотонов. Квантовая механика адекватно описывает основные свойства и поведение атомов, ионов, молекул, конденсированных сред, и других систем с электронно-ядерным строением. Квантовая механика также способна описывать поведение электронов, фотонов, а также других элементарных частиц, однако более точное релятивистски инвариантное описание превращений элементарных частиц строится в рамках квантовой теории поля. Эксперименты подтверждают результаты, полученные с помощью квантовой механики.
Основными понятиями квантовой кинематики являются понятия наблюдаемой и состояния.
Основные уравнения квантовой динамики — уравнение Шрёдингера, уравнение фон Неймана, уравнение Линдблада, уравнение Гейзенберга и уравнение Паули.
Уравнения квантовой механики тесно связаны со многими разделами математики, среди которых: теория операторов, теория вероятностей, функциональный анализ, операторные алгебры, теория групп.
В стандартных курсах квантовой механики изучаются следующие разделы
математическая основа квантовой механики и теория представлений;
точные решения одномерного стационарного уравнения Шрёдингера для различных потенциалов;
приближённые методы (квазиклассическое приближение, теория возмущений и т. д.);
нестационарные явления;
уравнение Шрёдингера в трёхмерном случае и теория углового момента;
теория спина;
тождественность частиц;
строение атомов и молекул;
рассеивание частиц;
26. Фундаментальные физические взаимодействия.
Фундамента́льные взаимоде́йствия — качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.
На сегодня достоверно известно существование четырех фундаментальных взаимодействий:
гравитационного;
электрослабого взаимодействия;
сильного;
поля Хиггса.
При этом наблюдается разделение электрослабого взаимодействия на электромагнитноe и слабое вследствие спонтанного нарушения симметрии и поля Хиггса.
Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено.
Первой из теорий взаимодействий стала теория электромагнетизма, созданная Максвеллом в 1863 году. Затем в 1915 г. Эйнштейн сформулировал общую теорию относительности, описывающую гравитационное поле. Появилась идея построения единой теории фундаментальных взаимодействий (которых на тот момент было известно только два), подобно тому как Максвеллу удалось создать общее описание электрических и магнитных явлений. Такая единая теория объединила бы гравитацию и электромагнетизм в качестве частных проявлений некоего единого взаимодействия.
В течение первой половины XX века ряд физиков предприняли многочисленные попытки создания такой теории, однако ни одной полностью удовлетворительной модели выдвинуто не было. Это, в частности, связано с тем, что общая теория относительности и теория электромагнетизма различны по своей сути. Тяготение описывается искривлением пространства-времени, и в этом смысле гравитационное поле условно нематериально (эмпирически недискретно), но, как и прочие формы взаимодействия, распространяется с предельно допустимой скоростью света (см. Скорость гравитации), в то время как электромагнитное поле являет все необходимые атрибуты материи.
Во второй половине XX столетия задача построения единой теории осложнилась необходимостью внесения в неё слабого и сильного взаимодействий, а также квантования теории.
В 1967 году Саламом и Вайнбергом была создана теория электрослабого взаимодействия, объединившая электромагнетизм и слабые взаимодействия. Позднее в 1973 году была предложена теория сильного взаимодействия (квантовая хромодинамика). На их основе была построена Стандартная Модель элементарных частиц, описывающая электромагнитное, слабые и сильное взаимодействия.
Экспериментальная проверка Стандартной Модели заключается в обнаружении предсказанных ею частиц и их свойств. В настоящий момент открыты все элементарные частицы Стандартной Модели.
Таким образом, в настоящее время фундаментальные взаимодействия описываются двумя общепринятыми теориями: общей теорией относительности и Стандартной Моделью. Их объединения пока достичь не удалось из-за трудностей создания квантовой теории гравитации. Для дальнейшего объединения фундаментальных взаимодействий используются различные подходы: теории струн, петлевая квантовая гравитация, а также М-теория.
