
- •Тема: «Теория вероятности» Теория
- •Элементы комбинаторики
- •Формула полной вероятности (формула Байеса)
- •Формула Бернулли
- •Примеры решения задач
- •Задания для самостоятельного решения
- •Тема: «Статистика» Теория
- •Генеральная совокупность и выборка
- •Вариационные ряды
- •Графическое изображение статистических данных
- •Задания для самостоятельного решения
Задания для самостоятельного решения
1. На 6 карточках написаны буквы к, а, р, е, т, а. После того, как их тщательно перемешают, берут наудачу по 1 карточке и кладут последовательно рядом. Какова вероятность того, что получится слово "ракета"?
2. Из разрезной азбуки выкладывается слово "статистика". Затем все буквы этого слова перемешиваются и снова выкладываются в случайном порядке. Какова вероятность того, что снова получится слово "статистика"?
3. Из разрезной азбуки составлено слово "треугольник". Ребенок, не умеющий читать, рассыпал эти буквы, а затем выбрал 4 из них и собрал в произвольном порядке. Найти вероятность того, что у него появятся слова: а) "руль"; б) "угол".
4. Телефонный номер состоит из 7 цифр. Какова вероятность того, что в нем: а) все цифры различны; б) все цифры нечетные; в) все цифры различны и четные?
5. Набирая номер телефона, абонент забыл последние две цифры и, помня лишь, что они различны, набрал эти цифры наудачу. Какова вероятность того, что набран нужный номер?
6. В лифт семиэтажного дома на первом этаже вошли 3 человека. Каждый из них с одинаковой вероятностью выходит на любом из этажей, начиная со 2-го. Найти вероятность следующих событий: а) все пассажиры выйдут на 4-м этаже; б) все пассажиры выйдут одновременно (на одном и том же этаже); в) все пассажиры выйдут на разных этажах.
7. В коробке содержится 4 одинаковых занумерованных кубика. Наудачу по одному извлекают все кубики из коробки. Найти вероятность того, что номера извлеченных кубиков появятся в возрастающем порядке.
8. Наудачу выбирается пятизначное число. Какова вероятность следующих событий: а) число одинаково читается как слева направо, так и справа налево (например, 12321); б) число кратно 5; в) число состоит из нечетных цифр.
9. Из колоды в 52 карты извлекаются наудачу 4 карты. Найти вероятность следующих событий: а) выбраны все карты трефовой масти; б) выбран хотя бы один король.
10. Два парохода должны подойти к одному и тому же причалу. Время прихода обоих пароходов независимо и равновозможно в течение данных суток. Определить вероятность того, что одному из пароходов придется ожидать освобождения причала, если время стоянки первого парохода – 1 час, а второго – 3 часа.
11. В телефонной книге случайно выбирается номер телефона, состоящий из 7 цифр. Найти вероятность того, что: а) четыре последние цифры телефонного номера одинаковы; б) все четыре последние цифры различны.
12. В ящике имеется 15 деталей, 9 из которых окрашены. Сборщик наудачу извлекает 3 детали. Найти вероятность того, что извлеченные детали окрашены.
13. Группа из 8 юношей и 8 девушек делится случайно на 2 равные части. Найти вероятность того, что в каждой части юношей и девушек поровну.
14. Брошены две игральные кости. Найти вероятность того, что сумма выпавших очков будет равна 8, а разность – 4.
15. На 5 карточках написаны цифры 1, 2, 3, 4, 5. Две из них одна за другой извлекаются. Найти вероятность того, что число на 2-й карточке будет больше, чем на 1-й.
16. В лотерее 100 билетов. Из них 25 выигрышных. Определить вероятность того, что 2 приобретенных билета окажутся выигрышными.
17. Из 7 яблок, 3 апельсинов и 5 лимонов случайным образом в пакет отбирают 5 фруктов. Найти вероятности следующих событий: а) в пакете только 1 апельсин; б) пакет не содержит апельсинов; в) пакет не содержит лимонов; г) пакет не содержит яблок.
18. Подбрасывают наудачу 3 игральные кости. Вычислить вероятности следующих событий: а) на 3 костях выпадут разные грани; б) хотя бы на одной из костей выпадет шестерка.
19. Дано отрезок АВ, точки M и С принадлежат данному отрезку. АВ = 12 см, АМ = 2 см, МС = 4 см. На отрезке АВ случайно выбирается точка Х. Какая вероятность того, что точка Х окажется на отрезке 1) АМ; 2) АС; 3) МС; 4) МВ; 5) АВ?
20. В круг вписан квадрат. Найти вероятность того, что точка, брошенная наудачу в круг, окажется внутри квадрата.
21. Найти вероятность того, что при бросании точки на квадрат со стороной 4 см, расстояние от этой точки до стороны квадрата будет меньше 2 см.
22. При наборе телефонного номера абонент забыл две последние цифры и набрал их наудачу, помня только, что эти цифры нечетные и разные. Найти вероятность того, что номер набран правильно.
23. На карточках отдельно написаны буквы: А – на 3; Е – на 1-й; И – на 1-й; К – на 1-й; М – на 2; Т – на 2 карточках. Ребенок берет карточки в случайном порядке и прикладывает их одну к другой. Найти вероятность того, что в результате получится слово «МАТЕМАТИКА».
24. Из урны, содержащей 5 синих, 3 черных, 2 белых шара, извлекаются одновременно 3 шара. Найти вероятность того, что извлеченные шары будут разных цветов.
25. Каждая буква слова "математика" написана на отдельной карточке. Случайно извлекаются 4 карточки. Какова вероятность получить при этом слово "тема"?
26. Наудачу подбрасывают 2 игральные кости. Найти вероятность того, что: а) сумма выпавших очков четна; б) произведение очков четно; в) на одной из костей число очков четно, а на другой нечетно; г) ни на одной из костей не выпало 6 очков.
27. Вероятность попадания в цель при 1 выстреле равна 1/2. Найти вероятность того, что с 2 выстрелов цель будет поражена.
28. Вероятность того, что новый товар будет пользоваться спросом на рынке, если конкурент не выпустит в продажу аналогичный продукт, равна 0,75, а при наличии конкурирующего товара равна 0,25. Вероятность выпуска конкурентом товара равна 0,35. Найти вероятность того, что товар будет иметь успех.
29. В корзине находится один шар - с равной вероятностью белый или черный. В корзину опускается белый шар, и после перемешивания извлекается один шар. Он оказался белым. Какова вероятность, что в корзине остался белый шар.
30. Имеются три одинаковые урны. В первой урне находятся 4 белых и 7 черных шаров, во второй – только белые и в третьей – только черные шары. Наудачу выбирается одна урна и из неё наугад извлекается шар. Какова вероятность того, что этот шар чёрный?
31.
В тире имеются 5 различных по точности
боя винтовок. Вероятности попадания
в мишень для данного стрелка соответственно
равны
и
0,4. Чему равна вероятность попадания в
мишень, если стрелок делает один выстрел
из случайно выбранной винтовки?
32. В пирамиде 5 винтовок, три из которых снабжены оптическим прицелом. Вероятность того, что стрелок поразит мишень при выстреле из винтовки с оптическим прицелом, равна 0,95; для винтовки без оптического прицела эта вероятность равна 0,7. Найти вероятность того, что мишень будет поражена, если стрелок производит один выстрел из наудачу взятой винтовки.
33. На склад поступило 2 партии изделий: первая – 4000 штук, вторая – 6000 штук. Средний процент нестандартных изделий в первой партии составляет 20%, а во второй – 10%. Наудачу взятое со склада изделие оказалось стандартным. Найти вероятность того, что оно: а) из первой партии, б) из второй партии.
34. Электролампы изготавливаются на трех заводах. 1-ый завод производит 30% общего количества ламп, 2-й – 55%, а 3-й – остальную часть. Продукция 1-го завода содержит 1% бракованных ламп, 2-го – 1,5%, 3-го – 2%. В магазин поступает продукция всех трех заводов. Купленная лампа оказалась с браком. Какова вероятность того, что она произведена 2-м заводом?
35. В студенческой группе 3 человека имеют высокий уровень подготовки, 19 человек – средний и 3 – низкий. Вероятности успешной сдачи экзамена для данных студентов соответственно равны: 0,95; 0,7 и 0,4. Известно, что некоторый студент сдал экзамен. Какова вероятность того, что:
а) он был подготовлен очень хорошо; б) был подготовлен средне; в) был подготовлен плохо.