Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ по ПР № 1и № 3.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
307.43 Кб
Скачать

Экстремум функции и необходимое условие экстремума.

Напомним определение локального экстремума функции.

        Определение.   Пусть функция определена в некоторой окрестности , , некоторой точки своей области определения. Точка называется точкой локального максимума, если в некоторой такой окрестности выполняется неравенство ( ), и точкой локального минимума, если .     

Понятия локальный максимум и локальный минимум объединяются термином локальный экстремум.

Следующая теорема даёт необходимое условие того, чтобы точка была точкой локального экстремума функции .

        Теорема: Если точка  -- это точка локального экстремума функции , и существует производная в этой точке , то .

Доказательство этой теоремы сразу же следует из теоремы Ферма (см. гл. 5).    

Утверждение теоремы можно переформулировать так:

если функция имеет локальный экстремум в точке , то либо 1) , либо 2) производная не существует.

Точка называется критической точкой функции , если непрерывна в этой точке и либо , либо не существует. В первом случае (то есть при ) точка называется также стационарной точкой функции .

Итак, локальный экстремум функции может наблюдаться лишь в одной из критических точек этой функции.

        Пример 3.   Рассмотрим функцию . Её производная существует при всех и равна . Следовательно, все критические точки -- стационарные и задаются уравнением . Это уравнение можно записать в виде ; оно имеет единственный корень : это единственная стационарная точка. Записав функцию в виде , легко увидеть, что в стационарной точке функция имеет минимум, равный .     

        Пример 4.   Рассмотрим функцию . Как и в предыдущем примере, производная существует при всех ; она равна . Все критические точки функции -- стационарные; таких точек три: .

Записав функцию в виде , легко увидеть, что в точках функция имеет минимум, так как в этих точках выражение обращается в 0, и

Если же мы запишем функцию в виде , то убедимся, что точка  -- точка локального максимума, поскольку при малых выражение положительно, и

    

Выпуклость функции.

        Определение.  Функция называется выпуклой вниз (или просто выпуклой) на интервале , если график функции идёт не выше хорды, соединяющей любые две точки графика и при .

Пусть . Тогда любую точку отрезка можно задать как , , а любую точку хорды -- как . Выражение задаёт линейную функцию переменного , график которой на отрезке совпадает с хордой.

То, что график функции идёт не выше хорды, означает, что

при всех .

Аналогично определяется выпуклость вверх: функция называется выпуклой вверх (или вогнутой) на интервале , если график функции идёт не ниже хорды, соединяющей любые две точки графика и при . Это означает, что

при всех .     

Графики выпуклой и вогнутой функций

Легко видеть, что функция вогнута на интервале в том и только том случае, когда функция выпукла на .

        Пример 5.  Рассмотрим функцию . Эта функция выпукла на любом интервале оси . Действительно, если интервал не содержит точки 0, то графики и на таком интервале совпадают, откуда следует, что неравенство (7.4) выполнено и функция выпукла. (Заметим, что на таком интервале верно и неравенство (7.5), так что одновременно и выпукла, и вогнута на таком интервале.) Если же точка 0 лежит в интервале , то и , и тот факт, что хорда лежит выше графика, геометрически очевиден.     

        Пример 6.   Рассмотрим функцию ; её график -- парабола .

Мы привыкли изображать параболу именно так, что очевидно: хорда идёт выше графика на любом интервале .

        Теорема: Пусть на интервале функция имеет вторую производную . Функция выпукла на тогда и только тогда, когда при всех , и вогнута тогда и только тогда, когда при всех .

          Именно эту теорему чаще всего применяют для исследования выпуклости и вогнутости функции на заданном интервале, а также для нахождения интервалов выпуклости и интервалов вогнутости данной функции.

на интервалах выпуклости и на интервалах вогнутости

        Пример 7.   Рассмотрим функцию , то есть

Для этой функции

(проверьте отдельно, что производная при существует и равна 0) и

то есть . (Также проверьте, что производная в точке 0 существует и равна 0.) Итак, при всех ; отсюда следует, что функция выпукла на всей оси.     

Функция выпукла на всей оси

        Пример 8.   Рассмотрим функцию . Её производная равна ; вторая производная . Чтобы найти интервалы выпуклости, решим неравенство , то есть . Решением является объединение лучей: . Значит, на интервалах и функция выпукла.

Для нахождения интервала вогнутости нужно решить неравенство , то есть . Решением является отрезок . Значит, на интервале функция вогнута.     

Интервалы выпуклости и вогнутости функции

Выпуклые функции обладают следующим весьма важным свойством: они могут иметь не более одного локального минимума на интервале выпуклости. А именно, верна следующая теорема.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]