- •1.Электроника: прошлое, настоящее, будущее.
- •2.Пассивные элементы.
- •3. Основы электронной теории.
- •4.Электрические свойства полупроводников: собственная и примесная проводимость.
- •5.Электронно- дырочный переход.
- •6.Вентильные свойства р- n перехода и их параметры, характер.
- •7.Контактные и поверхностные явления в полупроводниках.
- •8.Оптические и фотоэлектрические явления в полупроводниках.
- •9.Полупроводниковые резисторы.
- •10.Выпрямительные диоды.
- •11. Специальные диоды.
- •12. Классификация и устройство транзистора.
- •13. Принцип работы биполярного транзистора.
- •14. Режим работы транзистора.
- •15. Схемы включения бт с общей базой и статические характеристики.
- •16. Схемы включения бт с общим эмиттером и статические характеристики.
- •17. Схемы включения бт с общим коллектором и статические характеристики.
- •18. Первичные и вторичные параметры транзистора.
- •19. Общие сведения и устройство канальных полевых транзисторов.
- •20. Принцип действия канального полевого транзистора.
- •21. Параметры и характеристики пт с общим истоком.
- •22. Полевой транзистор с изолированным затвором (со встроенным каналом).
- •23. Полевой транзистор с изолированным затвором (с индуцированным каналом).
- •24. Сравнительные характеристики и параметры бт и пт.
- •25. Динистор – четырёхслойный полупроводниковый прибор.
- •26. Тиристор – управляемый четырёхслойный полупроводниковый прибор.
- •27. Симистор – многослойный полупроводниковый прибор.
- •28. Фоторезисторы.
- •29. Фотодиоды
- •30. Фототранзисторы.
- •31. Фототиристоры.
- •32. Светодиоды.
- •33. Оптроны.
- •34. Приборы для отображения информации.
- •35. Общие сведения и классификация ис.
- •36. Гибридные имс.
- •37. Полупроводниковые имс.
- •38. Функциональная микроэлектроника.
- •39. Общие сведения и классификация усилителей.
- •40. Параметры и характеристики усилителей.
- •41. Обратные связи в усилителе.
- •42. Построение усилительного каскада.
- •43. Динамический режим работы усилителя.
- •44. Выбор подачи смещения на усилитель.
- •45. Усилитель по току на бт.
- •46. Усилитель по напряжению на бт.
- •47. Усилитель по мощности на бт.
- •48. Усилительный каскад на пт.
- •49. Однотактный усилитель мощности.
- •50. Усилители постоянного тока. Общие сведения.
- •51. Балансная схема упт
- •52. Двухтактный упт на транзисторах и имс.
- •53. Дифференциальный усилитель.
- •54. Операционные усилители – основные свойства и характеристики.
- •55. Построение схем на базе оу: генераторы.
- •56. Общие сведения и принципы построения генераторов синусоидальных колебаний.
48. Усилительный каскад на пт.
полевых транзисторах перенос тока осуществляется основными носителями, а управление током происходит за счет воздействия поперечного электрического поля, создаваемого усиливаемым напряжением, приложенным к управляющему электроду - затвору. Полевые транзисторы обладают рядом преимуществ: низкой входной проводимостью, широким диапазоном рабочих температур и простотой изготовления. Принцип действия полевых транзисторов заключается в изменении сопротивления канала, через который перемещаются носители заряда от истока к стоку. По способу образования канала и изменения его ширины эти транзисторы можно разделить на три группы. К первой относятся транзисторы с управляющим р-n-переходом, у которых ширина канала модулируется за счет изменения запирающего напряжения на р-n-переходе канал-затвор. Остальные две группы составляют транзисторы с изолированным затвором, отделенным от канала тонким слоем диэлектрика. Они имеют структуру металл - диэлектрик - полупроводник и называются МДП-транзисторами. Ко второй группе относятся МДП-транзисторы со встроенным каналом, а к третьей - индуцированным каналом.
Полярность смешения на затворе для транзисторов первой группы должна быть отрицательной, для третьей группы - положительной. Транзисторы второй группы могут работать при любом смещении на затворе. Подложку часто замыкают на исток. При использовании транзисторов с каналом n-типа соответственно меняются полярности питающих напряжений.
Рис.3.2. Характеристики полевого транзистора с управляющим р-n-переходом каналом n-типа:
а- выходная; б-проходная.
Ток затвора у всех типов полевых транзисторов очень мал. Значение этого тока в транзисторах с управляющим р-n-переходом не превышает долей микроампера, а в МДП-транзисторах - долей пикоампера.
Усилительные свойства полевого транзистора, как и электронных ламп, характеризуются крутизной тока стока S проходной характеристики (рис.3.2,б). Выходная характеристика полевого транзистора при малых значениях напряжения стока Uс имеет омический участок. На этом участке характеристики полевые транзисторы могут быть использованы как управляемые резисторы (рис.3.2,а). При дальнейшем увеличении Uс наступает насыщение тока, сопротивление канала становится очень большим. Ток стока будет зависеть только от U3.
Вывод от подложки в МДП-транзисторах может быть использован как дополнительный управляющий электрод, так как напряжение на подложке влияет на ток стока. Принципиальная схема усилителя на полевом транзисторе с каналом n-типа приведена на рис.3.3.
49. Однотактный усилитель мощности.
Однотактный усилитель мощности работает в классе А. Режим работы выбирают таким, чтобы рабочая точка охватывала весь линейный диапазон дополнительных характеристик. Для этого предварительные каскады должны обеспечить необходимое усиление.
Рис.5.20. Схема однотактного усилителя мощности
Преимущества: - Минимум нелинейных искажений
Недостаток: - низкий КПД H 50 %
Трансформатор обеспечивает согласование каскада с нагрузкой.
Максимальная мощность отдаваемая в нагрузку достигается при равенстве сопротивления нагрузки и выходного сопротивления каскада.
