- •1. Общие физические принципы передачи сигналов по волокну
- •Строение волокна
- •Апертура волокна
- •Понятие о дисперсии
- •Распространение света по волокну
- •Понятие о моде.
- •Типы волокна.
- •2. Дисперсия в оптическом волокне
- •Причины и виды дисперсии
- •Поляризационная модовая дисперсия (пмд )
- •3. Затухание в оптическом волокне
- •3.1. Виды и причины затухания
- •3.2. Затухание на изгибах
- •3.3. Ширина полосы пропускания оптического кабеля и определение длины регенерационного и усилительного участка.
- •4. Изготовление оптических волокон. Оптические кабели
- •4.1. Методы изготовления оптических волокон
- •4.2. Щелочное стекло
- •4.5. Основные конструкции оптических кабелей
- •4.6. Кабели, изготавливаемые промышленностью России
- •5. Волновое уравнение
- •6.2.Фазовая самомодуляция и кроссмодуляция (фсм и фкм)
- •6.3.Четырёхволновое смешение.
- •6.4.Вынужденное неупругое рассеяние Мандельштамма-Бриллюэна
- •6.5.Комбинационное рассеяние Рамана
- •7. Оптические усилители
- •8. Мультиплексирование и волновое уплотнение.
- •8.1. Виды мультиплексирования
- •8.2. Увеличение числа каналов в существующей линии
- •8.3. Увеличение пропускной способности систем cwdm и наложение dwdm на cwdm
- •9. Современные типы волокон на основе двуокиси кремния
- •9.1. Развитие типов волокон
- •9.2. Существующие типы оптических волокон на основе кремния
- •10. Фотонно-кристаллические волокна
- •10.1. Фотонные кристаллы
- •10.2. Дырчатые волокна
- •10.3. Брэгговские волокна
- •10.4. Волокно с вспомогательными отверстиями
- •10.5. Затухание изгиба фкв
- •10.6. Отрицательный к-т преломления
- •11. Строительство оптических линий связи
- •11.1. Методы прокладки оптических кабелей
- •Прокладка в земле с помощью кабелеукладчика
- •Подвеска оптических кабелей на линиях электропередачи
- •11.4. Метод задувки.
- •11.5. Прокладка через реки
- •11.6. Техническая эксплуатация
- •12. Измерения
- •12.1. Измерение затухания
- •12.2. Измерение дисперсии
- •13. Компенсация дисперсии
- •13.1. Необходимость компенсации дисперсии
- •13.2. Компенсация с помощью включения волокна с отрицательной дисперсией
- •13.3. Компенсация с помощью дискретных рамановских усилителей
- •13.4. Компенсация с помощью фотонно-кристаллических волокон
- •13.5. Компенсация дисперсии на модах высшего порядка
- •13.6. Метод инверсии спектральной фазовой характеристики передаваемого сигнала
- •13.7. Перестраиваемая компенсация хроматической дисперсии.
- •13.8. Адаптивная компенсация хроматической дисперсии
- •13.9. Электронные методы компенсации
- •14. Понятие о солитонах
- •14.1. Краткий исторический обзор
- •14.2. Самофокусировка луча
- •14.3. Принципы формирования солитонов
- •Пассивные компоненты волс
- •Разветвители
- •Соединители
- •15.3. Разъёмные соединители
- •Аттенюаторы
- •Изоляторы и оптические циркуляторы
- •Внешние электромагнитные воздействия на оптический кабель
- •16.1. Основные источники внешних влияний
- •16.2. Грозовые разряды
- •16.2.1. Основные сведения о грозовых разарядах
- •16.2.2. Воздействие молнии на оптический кабель связи с металлическими элементами в конструкции.
- •16.2.3. Воздействие молнии на полностью диэлектрический оптический кабель без металлических элементов в конструкции
- •16.2.4. Поворот плоскости поляризации света в волокне под действием продольного магнитного поля молнии
- •16.3. Защита кабелей от ударов молнии
- •Воздействие ионизирующих излучений
- •Надёжность оптических линий
- •Заключение. Перспективы развития.
4.2. Щелочное стекло
Сложные стеклообразующие смеси, включающие натрий, калий, кальций, известны уже давно. Это натрий-калий силикатное стекло (Na2O, CaO, SiO2), натрий-бор-силикатное стекло (Na2O, B2O3, SiO2), натрий-алюминиевое стекло (Na2O, Al2O3, SiO2), щелочно-свинцовое стекло (Na2O, PbO, SiO2). Эти стёкла имеют низкую температуру плавления (~1400º C), легко регулируемый показатель преломления, малую стоимость. Существенный недостаток – большая возможность загрязнения и трудности очистки от примесей.
4.3. Халькогенидные стёкла
Затухание в кварцевом стекле определяется главным образом Релеевским рассеянием, которое зависит от длины волны обратно пропорционально её четвёртой степени, поэтому основное окно для работы находится в области 1.5-1.6 мкм. Однако далее 1.6 мкм двигаться нельзя, так как в кварцевом волокне наступает инфракрасный срез, при котором затухание в стекле сильно возрастает. Поэтому неудивительны поиски таких стёкол, которые могут работать при больших длинах волны. Б.Т.Коломийц и Н.А Горюнова открыли новый класс веществ: стеклообразующие полупроводники на основе сульфида и селенида мышьяка, которые отличаются высокой прозрачностью в инфракрасной области от 1 до 18 мкм и малой дисперсией в этом диапазоне. Затухание равно примерно 0.001-0.01 дБ/км, а нулевая дисперсия наблюдается на длине волны 4.85 мкм (рис.4.3).
Рис. 4.3. Затухание и дисперсия в халькогенидном волокне
Однако халькогенидные стёкла трудно совместимы со стёклами других типов из-за высокого теплового коэффициента линейного расширения. В то время как кварцевое стекло практически не изменяет своих размеров с температурой, длина халькогенидного стекла сильно от неё зависит. Кроме того, халькогенидные стёкла очень опасны в обращении из-за ядовитости входящих в него компонент (фтор, мышьяк, сера и др.). По этим и некоторым другим причинам они не получили распространения.
4.4. Полимерные волокна
Первые разработки полимерного волокна были сделаны фирмами Pilot Chemical и Du Pont в конце 60-х годов ХХ века. Они имели затухание в сотни дБ/км. Полимерное волокно имеет большой диаметр сердцевины (200 - 1000 мкм), высокую гибкость и стойкость к вибрациям, что делает его очень удобным для монтажа и применения в движущихся объектах. Однако затухание полимерного волокна значительно выше чем у кварцевого, порядка 100-200 дБ/км, поэтому общая длина сети не может быть большой (порядка 300 м). Полимерное волокно в используемом диапазоне волн является многомодовым (свыше 100 мод) и обладает большой межмодовой дисперсией, что ограничивает скорость передачи. Максимальная дальность 300 м совпадает с типичными требованиями оконечных сетей FTTH (волокно к дому) в европейских городских районах – это расстояние между стандартным кварцевым оптическим волокном, проложенным до фундамента многоквартирного дома и цифровым выводом в отдельных квартирах или апартаментах. Основное достоинство полимерного волокна (POF) заключается в том, что любой человек может осуществить монтажные работы, так как POF можно резать ножницами, муфту одевать с помощью обжимного инструмента и т.д. Другое важное преимущество POF заключается в том, что в них используется видимый свет вместо инфракрасного. Это сводит на нет риск ожога сетчатки глаза. Могут использоваться две волны: 520 нм для передачи данных на расстояние 300 м со скоростью 100 Мбит/с и 650 нм для передачи 1 Гбит/с на 100 м.
Основные области применения - это автомобильные и самолётные сети, промышленное управление, локальные сети нового поколения.
В настоящее время у лучших образцов полиметилметакрилатного волокна (ПММА) получено затухание 70 дБ/км на волне 560 нм, а самое низкое поглощение достигнуто сегодня у градиентного полимерного волокна (ГПОВ): при диаметре сердцевины 100-150 мкм затухание порядка 15 дБ/км на волне 1300 нм (рис.4.4). Наиболее используемым является окно прозрачности в безвредном видимом диапазоне длин волн в районе 650 нм (глубокий красный цвет) при затухании порядка 150 дБ/км.
Преимуществами полимерного волокна являются удобные размеры для монтажа (волокно можно резать бритвой, легко центрировать), работа в видимом диапазоне, простота эксплуатации, стойкость к вибрации
Рис. 4.4. Затухание в полимерных волокнах
1 – затухание волокна ПMMA
2 – дейтерированное ПMMA
3 – волокно ГПОВ
4 - обычное оптическое кварцевое волокно
и при небольших длинах удобно для использования в военных машинах, самолётах и ракетах.
