
- •Ответы к экзамену по тоэ:
- •Часть 1 (электрические цепи постоянного тока)
- •1)Что в электротехнике заменяют электромагнитный объект с происходящими в нём и в окружающем его пространстве процессами?
- •2)Из каких элементов состоит простейшая электрическая цепь? Объяснить назначение каждого из них.
- •3)Что характеризуют понятием “электродвижущая сила”? Чему численно равна эдс?
- •4)Что понимают под напряжением на некотором участке цепи? Что представляет собой электрический ток?
- •6)Что характеризуют понятиями “сопротивление r”, “индуктивность l”, “ёмкость c”?
- •7)Какие зависимости позволяют судить о величине параметров r, l и с? Как они выглядят?
- •8)Какие элементы электрической цепи называют идеальными? Чем они отличаются от реальных элементов?
- •9)Какие элементы электрических цепей называют линейными? Объяснить, почему.
- •10)По каким причинам характеристики резисторов, индуктивных катушек и конденсаторов оказываются нелинейными?
- •11)Что представляет собой схема замещения электрической цепи? Чем она отличается от обычной схемы той же цепи? Привести пример.
- •12)Сформулировать признаки последовательного и параллельного соединений элементов.
- •13)Что представляет собой двухполюсник? Какие бывают двухполюсники?
- •14)Что представляют собой условные положительные направления эдс, напряжений и токов. Каким образом и для чего их задают?
- •15)Привести схему замещения и внешнюю характеристику источника напряжения. Объяснить, как по вах источника определить его параметры?
- •16)Чем реальный источник постоянного напряжения отличается от идеального? Объяснить, что представляет собой источник бесконечно большой мощности.
- •17)Привести известные схемы замещения источников энергии в режимах холостого хода и короткого замыкания. Дать краткую характеристику каждой из них.
- •18)Какой режим работы цепи называют номинальным? Какие величины обычно определяют номинальный режим?
- •19)При каком условии приёмник, подключенный к реальному источнику энергии, потребляет максимальную мощность?
- •20)В каком случае режим работы цепи называют согласованным? в каких цепях этот режим выгоден, а в каких – нет? Объяснить, почему.
- •21)Привести выражение закона Ома для участка цепи с эдс. Объяснить, от чего зависит режим работы источника в подобной ветви.
- •22)Привести две формулировки I закона Кирхгофа. Объяснить, при каком условии уравнения, составленные по I закону Кирхгофа, будут независимыми.
- •23)Привести две формулировки II закона Кирхгофа. Объяснить, в каких случаях применяется каждая из формулировок.
- •24)Объяснить, при каком условии уравнения, составленные по II закону Кирхгофа, будут независимыми.
- •25)Объяснить особенности эквивалентных преобразований при последовательном и параллельном соединениях приёмников.
- •26)Резисторы r1, r2 и r3 включены параллельно. Чему равно эквивалентное сопротивление данного участка цепи?
- •27)Каков порядок “сворачивания” пассивной части цепи в случае смешанного соединения элементов?
- •28)Как практически определить входное сопротивление активного двухполюсника прямым и косвенным путём?
- •29)Как практически определить входное сопротивление пассивного двухполюсника прямым и косвенным путём?
- •30)Объяснить порядок определения параметров активного двухполюсника методом двух нагрузок?
- •31)Объяснить порядок определения параметров активного двухполюсника методом холостого хода и короткого замыкания.
- •32)На основании какого закона составляется баланс мощностей в цепи постоянного тока? Сформулировать этот закон.
- •33)Привести уравнение баланса мощностей для цепи постоянного тока, содержащей несколько резисторов, источник эдс и источник тока.
- •34)Объяснить, когда источники эдс и тока работают как источники энергии, а когда – как приёмники энергии.
- •35)Сформулировать принцип наложения токов в ветвях применительно к электрическим цепям, содержащим несколько источников энергии.
- •36)Какие уравнения являются базовыми в случае расчёта электрической цепи методом контурных токов?
- •37)Какие уравнения являются базовыми в случае расчёта электрической цепи методом узловых потенциалов?
- •38)Объяснить правило знаков при определении действительных токов в ветвях заданной цепи методом наложения.
- •39)Что представляет собой контур электрической цепи. В каком случае цепь является многоконтурной? Какие контуры при этом являются независимыми?
- •40)Для чего составляют баланс мощностей? Привести уравнение баланса мощностей для цепи постоянного тока, содержащей несколько резисторов, источник эдс и источник тока.
- •41)Привести схему замещения и вольтамперную характеристику источника напряжения. Вид характеристики объяснить.
- •42)Что представляет собой потенциальная диаграмма контура или участка электрической цепи? Объяснить порядок построения её.
- •43)В чём особенность расчёта цепи муп в случае наличия в ней ветви с идеальным источником эдс e?
- •44)В чём особенность расчёта цепи мкт в случае наличия в ней ветви с идеальным источником тока j?
- •45)Показать, как в линии передачи постоянного тока напряжение на приёмнике зависит от величины его сопротивления Rн. Ответ объяснить.
- •46)Показать, как в линии передачи постоянного тока мощность p, потребляемая приёмником, зависит от величины его сопротивления Rн. Ответ объяснить.
- •Часть 2 (электрические цепи однофазного синусоидального тока)
- •1)Какой электрический ток называют переменным?
- •2)Какой переменный ток называют периодическим (непериодическим)?
- •3)Благодаря чему электрические цепи синусоидального тока получили широкое распространение?
- •4)Привести основные характеристики синусоидального тока. Дать определение каждой из них.
- •5)Что характеризуют понятием “угловая частота (скорость)”? в каких единицах она измеряется?
- •6)Определить понятие “угол сдвига фаз”. Привести пример.
- •7)Что понимают под действующим значением синусоидального тока (напряжения)? Как оно определяется?
- •8)Что понимают под средним значением синусоидального тока (напряжения)? Как оно определяется?
- •9)Перечислить известные способы представления синусоидальных электрических величин.
- •10)На основании чего синусоидальные электрические величины (эдс, напряжение, ток) при анализе и в расчётах заменяют комплексными числами?
- •15)Доказать, что напряжение uR и ток I в активном сопротивлении совпадают по фазе. Где используется это свойство?
- •16)Записать закон Ома для участка цепи с активным сопротивлением r?
- •17)Что понимают под “мгновенной мощностью” участка цепи синусоидального тока? Привести пример расчёта мгновенной мощности.
- •18)Привести осциллограмму тока I и мгновенной мощности p в цепи с активным сопротивлением. Ответ объяснить.
- •19)Что представляет собой активная мощность участка цепи синусоидального тока? Как она определяется? Привести пример.
- •20)Доказать, что в идеальной ёмкости ток опережает напряжение на угол 90o.
- •21)Чему равно сопротивление ёмкости с? Записать комплексную величину этого сопротивления.
- •22)Привести осциллограмму напряжения uС и мгновенной мощности p в цепи с идеальной ёмкостью. Ответ объяснить.
- •23)Записать закон Ома для участка цепи с идеальной ёмкостью c.
- •24)Что характеризуют понятием “реактивная мощность”? Чему равна реактивная (ёмкостная) мощность участка цепи с идеальной ёмкостью с?
- •25)Чем реальный конденсатор отличается от идеального? Что называют углом потерь?
- •26)Объяснить, почему на практике не учитывают различия между реальным конденсатором и идеальной ёмкостью.
- •27)Доказать, что эдс самоиндукции в идеальной индуктивности отстаёт по фазе от тока на угол 90o.
- •28)Доказать, что в идеальной индуктивности напряжение опережает ток на угол 90о.
- •29)Чему равно сопротивление индуктивности l? Записать комплексную величину этого сопротивления.
- •30)Записать закон Ома для участка цепи с идеальной индуктивностью l.
- •31)Что характеризуют понятием “реактивная мощность”? Чему равна реактивная (индуктивная) мощность участка цепи с идеальной индуктивностью l?
- •32)Привести осциллограмму напряжения uL и мгновенной мощности p в цепи с идеальной ёмкостью. Ответ объяснить.
- •33)Привести осциллограмму напряжения uК и тока I в цепи с реальной индуктивной катушкой. Ответ объяснить.
- •34)Записать закон Ома для участка цепи с реальной индуктивной катушкой.
- •35)От чего зависит разность фаз между напряжением и током в цепи с реальной индуктивной катушкой? Ответ объяснить.
- •37)От чего зависит угол сдвига фаз φ между напряжением и током в комплексной нагрузке? Показать на конкретном примере.
- •38)Объяснить порядок определения параметров реальной индуктивной катушки по показаниям амперметра, вольтметра и ваттметра. Привести схему включения приборов.
- •39)Как определяется средняя мощность в цепи с реальной индуктивной катушкой? Чему она равна?
- •40)Привести схемы измерения активной мощности участка цепи синусоидального тока прямым и косвенным путём.
- •41)Объяснить, когда показание электродинамического ваттметра не имеет физического смысла. Привести пример.
- •42)Чему равно сопротивление реальной индуктивной катушки, если известны Rк, l и частота источника f? Записать комплексную величину этого сопротивления.
- •43)Изобразить векторную диаграмму тока и напряжений участка цепи с реальной индуктивной катушкой? Как называют эту диаграмму?
- •44)Что называют “треугольником сопротивлений”? Изобразить треугольник сопротивлений участка цепи с реальной индуктивной катушкой.
- •45)Полагая, что сопротивление r и индуктивность l катушки индуктивности известны, определить параметры эквивалентной параллельной схемы замещения.
- •46)Что представляет собой “треугольник напряжений” участка цепи с резистором r и конденсатором ёмкостью c, соединёнными последовательно?
- •47)Что называют “треугольником” сопротивлений. Изобразить треугольник сопротивлений участка цепи с резистором r и конденсатором ёмкостью c, соединёнными последовательно?
- •48)Полагая, что сопротивление r и ёмкость конденсатора c, соединённых последовательно, известны, определить параметры эквивалентной параллельной схемы замещения.
- •49)Сопротивление r и конденсатор ёмкостью с соединены параллельно. Определить параметры эквивалентной последовательной схемы замещения.
- •50)Построить векторную диаграмму тока и напряжений участка цепи с реальной индуктивной катушкой? Как называют эту диаграмму?
- •51)Построить векторную диаграмму тока и напряжений участка цепи с резистором r и конденсатором ёмкостью с, соединёнными последовательно?
- •52)Чему равно сопротивление участка цепи с последовательным соединением резистора r и конденсатора ёмкостью с? Записать комплексную величину этого сопротивления.
- •53)Привести закон Ома в комплексной форме записи.
- •54)Комплексное сопротивление участка цепи . Чему равна комплексная проводимость этого участка?
- •55)Сформулировать и записать первый и второй законы Кирхгофа в комплексной форме записи.
- •56)Как определяют полную s, активную p и реактивную q мощности в цепи синусоидального тока?
- •57)В чём сущность и достоинство символического метода расчёта цепей синусоидального тока?
- •58)Какой режим работы пассивной цепи, содержащей катушки индуктивности и конденсаторы, называют резонансом? Какие два основных вида резонанса известны?
- •59)Привести схему электрической цепи, в которой возможен резонанс напряжений. Записать условие и признаки резонанса напряжений.
- •60)Почему последовательное (параллельное) соединение индуктивной катушки и конденсатора называют последовательным (параллельным) колебательным контуром?
- •61)Привести схему электрической цепи, в которой возможен резонанс токов. Записать условие и признаки резонанса токов.
- •62)Привести резонансную кривую I(w) в случае резонанса напряжений. Вид кривой объяснить.
- •63)Привести резонансную кривую I(w) в случае резонанса токов. Вид кривой объяснить.
- •64)Какие две катушки индуктивности называют индуктивно связанными? Что представляют собой коэффициент связи?
- •65)От чего зависит, как (согласно или встречно) включены катушки индуктивности? Объяснить на конкретных примерах.
- •66)Как практически определяют одноименные зажимы двух индуктивно связанных катушек?
- •67)Как практически определяют взаимную индуктивность двух индуктивно связанных катушек? Привести два способа.
- •68)Какие методы используют для расчёта цепей с индуктивно связанными элементами?
- •69)Для чего производят “развязывание” индуктивных связей между катушками? Привести правила развязывания.
- •70)Что представляет собой трансформатор без стального сердечника (воздушный трансформатор). Для каких целей он применяется?
- •71)Привести схему замещения и уравнения равновесия напряжений первичной и вторичной цепей воздушного трансформатора.
- •72)Построить векторную диаграмму токов и напряжений воздушного трансформатора. Объяснить порядок построения.
- •73)Определить условия, при соблюдении которых в комплексной нагрузке, подключенной к активному двухполюснику, выделяется максимальная активная мощность?
- •74)Объяснить смысл понятий “падение напряжения» и “потеря напряжения” в линии передачи энергии синусоидального тока.
- •75)Когда падение напряжения и потеря напряжения в линии передачи синусоидального тока будут одинаковы? Объяснить, почему.
- •76)Что называют коэффициентом мощности цепи? с какой целью стремятся повысить его?
- •Часть 3 (электрические цепи с несинусоидальными периодическими эдс, напряжениями и токами)
- •1)Каковы причины появления периодических несинусоидальных токов и напряжений в линейных электрических цепях?
- •2)Что представляет дискретный ряд Фурье? Привести 2 формы записи дискретного ряда Фурье.
- •3)Как определяются коэффициенты ряда Фурье?
- •4)Каковы свойства периодических несинусоидальных функций, обладающих симметрией. Рассмотреть случаи симметрии относительно оси абсцисс, относительно оси ординат и относительно начала координат.
- •5)Порядок расчёта электрических цепей с источниками напряжения несинусоидальной периодической формы.
- •6)Действующее и среднее значения несинусоидальных периодических электрических величин.
- •7)Активная, реактивная и полная мощности в цепях с несинусоидальными периодическими напряжениями и токами.
- •8)Зависимость формы кривой тока от характера цепи при несинусоидальном напряжении.
- •9)Резонансные явления в цепях с несинусоидальными периодическими напряжениями и токами. Фильтры.
59)Привести схему электрической цепи, в которой возможен резонанс напряжений. Записать условие и признаки резонанса напряжений.
Ответ:
Резонанс
напряжений возникает в последовательной
RLC-цепи.
Условием возникновения резонанса
является равенство частоты источника
питания резонансной частоте w=wр,
а следовательно и индуктивного и
емкостного сопротивлений xL=xC.
Так как они противоположны по знаку, то
в результате реактивное сопротивление
будет равно нулю. Напряжения на катушке
UL и
на конденсаторе UC будет
противоположны по фазе и компенсировать
друг друга. Полное сопротивление цепи
при этом будет равно активному
сопротивлению R, что в свою очередь
вызывает увеличение тока в цепи, а
следовательно и напряжение на элементах.
При резонансе напряжения UC и
UL могут
быть намного больше, чем напряжение источника,
что опасно для цепи.
С увеличением частоты сопротивление катушки увеличивается, а конденсатора уменьшается. В момент времени, когда частота источника будет равна резонансной, они будут равны, а полное сопротивление цепи Z будет наименьшим. Следовательно, ток в цепи будет максимальным.
Из условия равенства индуктивного и емкостного сопротивлений найдем резонансную частоту:
Исходя из записанного
уравнения, можно сделать вывод, что
резонанса в колебательном контуре можно
добиться изменением частоты тока
источника (частота вынужденных колебаний)
или изменением параметров катушки L и
конденсатора C. Следует знать, что в
последовательной RLC-цепи, обмен энергией
между катушкой и конденсатором
осуществляется через источник питания.
60)Почему последовательное (параллельное) соединение индуктивной катушки и конденсатора называют последовательным (параллельным) колебательным контуром?
Ответ: На
рис. 3.13 представлен последовательный
колебательный контур, к которому
подключен генератор гармонических
сигналов
,
внутреннее сопротивление которого
равно нулю.
Рис
3.13. Последовательный
контур с внешним генератором. На основании
второго закона Кирхгофа запишем:
.
(3.73) Ток в контуре будет равен:
(3.74)
Входное
сопротивление:
.
(3.75) Реактивная составляющая входного
сопротивления:
.
(3.76). В зависимости от расстройки контура
относительно резонансной частоты
возможны три случая:
- При
этом реактивная составляющая входного
сопротивления
носит
индуктивный характер;
При
этом реактивная составляющая входного
сопротивления
носит
емкостный характер;
при
этом реактивная составляющая входного
сопротивления равна нулю. Реактивные
сопротивления будут равны на резонансной
частоте. На резонансной частоте входное
сопротивление контура равно активному
сопротивлению и ток в контуре равен
значению
.
Эквивалентная схема контура при резонансе
приведена на рисунке.
Рис. 3.14. Эквивалентная схема последовательного контура на резонансной частоте. Амплитуды напряжений на реактивных элементах на резонансной частоте равны по величине и противоположны по фазе.
. (3.77)
Из этого выражения найдем резонансную
частоту:
.
(3.78). Оценим величину отношения напряжений
на реактивных элементах на резонансной
частоте к напряжению внешнего генератора:
, (3.79)
. (3.80).
Таким образом, на резонансной частоте
в последовательном контуре напряжения
на реактивных элементах равны по
абсолютной величине и в Q раз
превышают напряжение внешнего генератора.
Такой резонанс называется резонансом
напряжений.
Параллельный
колебательный контур состоит из
параллельно включенных катушки
индуктивности и конденсатора, как
показано на рис. 3.17. Активное сопротивление
катушки индуктивности равно
,
а потери электромагнитной энергии в
конденсаторе эквивалентны некоторому
активному сопротивлению
.
Контур питается идеальным генератором
тока.
Рис. 3.17. Параллельный колебательный контур. Входное сопротивление контура равно:
. (3.92).
Для высокодобротных контуров в области
резонансной частоты
и
.
Учитывая это, можно записать:
(3.93)
Где:
;
.
Таким образом, входное сопротивление
зависит от частоты. Токи в ветвях контура
также зависят от частоты. На резонансной
частоте
сопротивление
катушки индуктивности по модулю
становится равным модулю сопротивления
конденсатора и токи в ветвях контура
будут равны по абсолютной величине и
противоположны по фазе. При этом ток в
общей ветви в случае идеального контура
был бы равен 0. На резонансной частоте
в контуре протекает ток
. (3.94).
Входное сопротивление контура при
резонансе становится активным и равно:
(3.95).
Следовательно, ток в контуре на резонансной
частоте равен:
(3.96).
Таким образом, токи в ветвях контура
при резонансе в
раз
превышают ток внешнего генератора.
Поэтому говорят, что в параллельном
контуре имеет место резонанс токов.
Зависимость отношения амплитуды
напряжения на контуре
на
текущей частоте к амплитуде напряжения
на контуре на резонансной частоте
от
частоты называют амплитудно-частотной
характеристикой параллельного контура.
Запишем выражение для амплитудно-частотной
характеристики параллельного контура:
(3.97).
Входное сопротивление контура равно:
(3.98)
Умножим числитель и знаменатель этого
выражения на (
):
.
(3.99).
Найдем
модуль входного сопротивления:
.
(3.100). Подставив модуль входного
сопротивления в выражение (3.97), окончательно
получим:
.
(3.101). Таким образом, АЧХ параллельного
и последовательного контуров описываются
одним и тем же выражением. Фазовая
характеристика параллельного контура
(рис. 2.18) построена на основании выражения:
(3.102)
Рис. 3.18. Фазовая характеристика параллельного контура