
- •1.1 Общее устройство автомобиля
- •1.3 Главная передача и ее назначение. Конструкционные требования к главной передаче.
- •2.1 Международная классификация автомобилей согласно рекомендаций
- •2.2 Наддув. Двигателя. Интеркуллер. Назначение и применение.
- •2.3 Типы главных передач.
- •3.1 Эксплуатационные свойства автомобиля.
- •3.2 Назначение и устройство трехкомпонентного катализатора.
- •3.3 Разделенная главная передача.
- •4.1 Основные направления совершенствования двигателей внутреннего сгорания.
- •4.2 Назначение трансмиссии автомобиля и ее виды.
- •4.3 Дифференциала. Назначение и типы.
- •5.1 Общее устройство двигателя внутреннего сгорания. Рабочий цикл двигателя.
- •Устройство двигателя внутреннего сгорания
- •5.2 Сцепление. Виды сцеплений. Требования, предъявляемые к сцеплениям.
- •5.3 Общая компоновка ведущих мостов. Балки ведущих мостов. Полуоси.
- •6.1 Способы повышения мощности двигателя:
- •1. Увеличение рабочего объема
- •2. Увеличение степени сжатия
- •4. Присадки, снижающие трение, увеличивающие компрессию
- •6.2 Конструкция сцепления и их приводов.
- •6.3 Передний управляемый мост.
- •7.1 Внешняя скоростная характеристика двигателя.
- •7.2 Виды привода управления сцеплением. Элементы приводов сцеплением
- •7.3 Карданная передача равных угловых скоростей.
- •8.1 Механизмы и системы двигателя.
- •8.2 Коробка передач с вариатором.
- •8.3 Требования к коробке передач.
- •9.1 Кривошипно-шатунный механизм
- •9.2 Устройство механического рядного топливного насоса высокого давления.
- •9.3 Многовальные коробки передач.
- •10.1 Газораспределительный механизм
- •10.2 Требования предъявляемые к трансмиссии.
- •10.3 Раздаточная коробка. Назначение . Требования к раздаточной коробке.
- •11.1 Способы изменения высоты подъема клапана газораспределительного механизма двигателя
- •11.2 Назначение и типы карданных передач и карданных шарниров.
- •Карданная передача с шарниром неравных угловых скоростей (карданная передача).
- •Карданная передача с шарниром равных угловых скоростей (шрус) - широкое применение получила в переднеприводных автомобилях для соединения дифференциала и ступицы ведущего колеса.
- •Карданная передача с полукарданным упругим шарниром
- •11.3 Муфта Халдех. Назначение. Принцип действия.
- •Принцип работы системы
- •12.1 Система смазки двигателя. Назначение. Способы смазки трущихся поверхностей.
- •Карданная передача с шарниром неравных угловых скоростей (карданная передача).
- •Карданная передача с шарниром равных угловых скоростей (шрус) - широкое применение получила в переднеприводных автомобилях для соединения дифференциала и ступицы ведущего колеса.
- •Карданная передача с полукарданным упругим шарниром
- •12.3 Виды привода сцеплением. Элементы приводов
- •13.1 Эксплуатационные свойства автомобиля
- •13.2 Электрогидравлическая форсунка фирмы бош.
- •13.3 Гидромеханическая коробка передач
- •14.1 Тяговая сила и тяговая характеристика автомобиля.
- •14.2 Аккумуляторные топливные системы с электронным управлением Common Rail.
- •14.3 Виды привода сцеплением. Элементы приводов.
- •15.1 Устройство системы охлаждения двигателя
- •15.2 Назначение и типы коробок передач
- •15.3 Карданная передача неравных угловых скоростей. Карданные шарниры.
- •Карданная передача с шарниром равных угловых скоростей (шрус) - широкое применение получила в переднеприводных автомобилях для соединения дифференциала и ступицы ведущего колеса.
- •16.1. Эволюция системы питания бензинового двигателя.
- •16.2. Система питания дизельных двигателей с механической системой впрыска.
- •16.3.Ступенчатые коробки передач. Требования к коробке передач.
- •17.1 Диаграмма фаз газораспределения и ее описание.
- •17.2. Основные механизмы и узлы топливной системы Common Rail.
- •17.3 Требования к карданной передаче
- •18.1. Система смазки двигателя. Назначение. Способы смазки трущихся поверхностей.
- •18.2 .Пути и способы снижения токсичности отработавших газов двигателей. Снижение токсичности отработавших газов точным смесеобразованием
- •Равномерное распределение
- •Рециркуляция отработавших газов как способ снижения токсичности отработавших газов
- •Влияние степени сжатия на количество токсичных компонентов отработавших газов
- •18.3. Раздаточная коробка. Назначение . Требования к раздаточной коробке.
- •19.1.Эксплуатационные свойства автомобиля
- •19.2. Устройство и принцип работы механической форсунки.
- •19.3. Коробки передач с двойным сцеплением dsg
- •Свойства характеризующие автомобиль.
- •Общее устройство двигателя внутреннего сгорания. Рабочий цикл Двигателя
- •Виды мостов автомобиля. Требования к мостам.
- •21.1 Требования предъявляемые к конструкции автомобиля.
- •21.2 Основные механизмы и узлы топливной системы Common Rail.
- •21.3 Требования к карданной передаче
- •22.1 Внешняя скоростная характеристика двигателя
- •22.2 Кривошипно-шатунный механизм и его параметры.
- •22.3 Раздаточная коробка. Назначение . Требования к раздаточной коробке.
- •Устройство системы охлаждения двигателя.
- •23. 2. Назначение и устройство трехкомпонентного катализатора.
- •23.3 . Передний управляемый мост.
- •Эксплуатационные свойства автомобиля
- •24. 2. Кривошипно-шатунный механизм и его параметры.
- •24.3. Раздаточная коробка. Назначение . Требования к раздаточной коробке.
- •25.1 Общее устройство двигателя внутреннего сгорания. Рабочий цикл Двигателя
- •25.2. Основные механизмы и узлы топливной системы Common Rail.
- •25.3 Требования к карданной передаче
- •26.1. Внешняя скоростная характеристика двигателя.
- •26.2 Система питания дизельных двигателей с механической системой впрыска.
- •26.3. Многовальные коробки передач.
- •27.1.Требования предъявляемые к конструкции автомобиля.
- •27.2. Основные механизмы и узлы топливной системы Common Rail.
- •27.3. Коробки передач с двойным сцеплением dsg
- •28.1. Эволюция системы питания бензинового двигателя.
- •28.2 Устройство механического рядного топливного насоса высокого давления.
- •28.3 Назначение трансмиссии автомобиля и ее виды.
6.1 Способы повышения мощности двигателя:
1. Увеличение рабочего объема
Увеличить рабочий объем - это самое простое решение. Чем больше сгорает топлива, тем выше мощность. Осуществляется данная процедура за счет замены коленчатого вала на другой (с большим ходом) или за счет увеличения диаметра цилиндров. Это кардинальное вмешательство, которое приводит к увеличению максимального крутящего момента. Такое увеличение мощности двигателя подходит практически для любой машины.
МИНУСЫ: Данная процедура - не из самых дешевых, и при этом существенно увеличивает габариты и массу конструкции. А также, что совсем нежелательно, приводит к падению общего КПД двигателя и повышению расхода топлива.
2. Увеличение степени сжатия
Самый простой способ увеличить степень сжатия - это уменьшение объема камеры сгорания путем фрезеровки нижней плоскости головки блока цилиндров (уменьшив ее высоту). Другой способ - установка поршней с более выпуклой верхней частью. Также на степень сжатия влияет установка модифицированного распределительного вала, который позволяет улучшить геометрические показатели степени сжатия за счет запаздывания закрытия впускных клапанов. Увеличение степени сжатия позволяет поднять КПД двигателя, добиться повышения мощности при одновременном снижении расхода бензина.
МИНУС: Возникает необходимость перейти на бензин с более высоким октановым числом и следить за его качеством, т.к. повышается риск детонации.
3.Чип-тюнинг
Пойти по этому пути увеличения мощности двигателя можно, только если двигатель имеет впрыск с электронным управлением. Суть чип-тюнинга - в замене программы блока управления на двигателе путем перепрограммирования или замены микросхемы - чипа. Этим способом можно достигнуть увеличения мощности двигателя на 10%.
МИНУСЫ: Практикуемая в таких случаях отмена ограничения максимальных оборотов надвигатель ведет к повышению износа двигателя, а увеличение подачи топлива на переходных режимах подразумевает увеличение расхода топлива. Цена подобной модификации стоит немалых денег.
4. Присадки, снижающие трение, увеличивающие компрессию
Восстанавливают и защищают от износа рабочие поверхности двигателя внутреннего сгорания.
МИНУСЫ: Интенсивное разрушение поверхности не железных деталей в трубоспряжениях
Способов увеличения мощности автомобиля достаточно много, какие-то из них эффективны, какие-то - нет. Каждый из них имеет свои плюсы и минусы.
6.2 Конструкция сцепления и их приводов.
В зависимости от конструкции различают следующие типы сцепления: фрикционное, гидравлическое, электромагнитное
Фрикционное сцепление передает крутящий момент за счет сил трения. В гидравлическом сцеплении связь обеспечивается за счет потока жидкости. Электромагнитное сцепление управляется магнитным полем.
Самым распространенным типом сцепления является фрикционное сцепление. В зависимости от количества дисков различает следующие виды фрикционного сцепления: однодисковое, двухдисковое и многодисковое.
Привод сцепления предназначен для обеспечения выключения сцепления, а именно отжимания диафрагменной пружины. На современных автомобилях применяются приводы сцепления следующих видов: механический, гидравлический и электрогидравлический.
Наибольшее применение в автомобиле нашли механический и гидравлический приводы сцепления. Электрогидравлический привод используется для автоматизации управления сцеплением в роботизированной коробке передач, например, в коробке передач Easytronic.
Механический привод сцепления
Механический привод используется в качестве привода сцепления небольших легковых автомобилей. Данный вид привода отличает простота конструкции и невысокая стоимость.
Механический привод сцепления объединяет педаль сцепления, приводной трос и рычажную передачу. На тросе располагается механизм регулирования свободного хода педали сцепления.
Основным конструктивным элементом механического привода сцепления является трос, который соединяет педаль сцепления с вилкой выключения. Трос заключен в оболочку. При нажатии на педаль сцепления усилие через трос передается на рычажную передачу, которая в свою очередь перемещает вилку сцепления и обеспечивает выключение сцепления.
В системе предусмотрен механизм регулирования свободного хода педали сцепления, включающий регулировочную гайку на конце троса. Необходимость регулировки обусловлена постепенным изменением положения педали сцепления вследствие износа фрикционных накладок.
Гидравлический привод сцепления
Гидравлический привод сцепления по конструкции аналогичен гидравлическому приводу тормозной системы. В нем используется свойство не сжимаемости жидкости. В качестве рабочей жидкости применяется тормозная жидкость.
Гидравлический привод сцепления имеет более сложную конструкцию. Помимо педали привод включает главный и рабочий цилиндры, бачек рабочей жидкости и соединительные трубопроводы.
Конструктивно главный и рабочий цилиндры состоят из поршня с толкателем, размещенных в корпусе. При нажатии на педаль сцепления толкатель перемещает поршень главного цилиндра, происходит отсечка рабочей жидкости от бачка. При дальнейшем движении поршня рабочая жидкость по трубопроводу поступает в рабочий цилиндр. Под воздействием жидкости происходит движение поршня с толкателем. Толкатель воздействует на вилку сцепления и обеспечивает выключение сцепления.
Для удаления воздуха из системы гидропривода сцепления (прокачки системы) на главном и рабочем цилиндрах установлены специальные клапаны (штуцеры).
Для облегчения управления на некоторых моделях автомобилей используются пневматический или вакуумный усилитель привода сцепления.