- •1.Роль и значение методов исследований в различных отраслях науки ( физике, химии, биологии и др.).Предмет, цели и задачи курса «Физические и физико-химические методы исследований».
- •2.Классификация методов определения и разделения элементов.
- •3.Основные физические методы исследований(примеры).
- •4.Основные физико-химические методы исследований(примеры).
- •5.Инструментальные (оптические) методы исследований.
- •6.Инструментальные (электрохимические) методы исследований.
- •7.Важнейшие критерии выбора методов анализа (чувствительность и др.)
- •8. Важнейшие критерии выбора методов анализа (точность и др.)
- •9.Математическая обработка экспериментальных данных (виды ошибок и их влияние на точность метода).
- •11.Теория ошибок (формула Гаусса нормального распределения вариант, ошибка среднего арифметического, доверительный интервал выборочной средней и доверительная вероятность). Коэффициенты Стьюдента.
- •12. Оценка достоверности разности между средними арифметическими двух выборочных совокупностей с помощью нормативного распределения (1) и критерия р.
- •Показатели корреляции Параметрические показатели корреляции Ковариация
- •Линейный коэффициент корреляции
- •Область применения
- •13.Использование метода наименьших квадратов и элементов корреляционного анализа при обработке информации.
- •Сущность мнк
- •Альтернативное использование мнк
- •14.Взаимодействие света с веществом. Механизм поглощения света . Вращательные, колебательные и электронные уровни в многоатомных молекулах и переходы между ними.
- •16.Основные закономерности поглощения света ( перехода электронов молекул на возбужденный уровень).
- •17.Основной закон светопоглощения – закон Бугера-Ламберта-Бэра и его практическое использование.
- •18.Классификация электронных переходов. Основные хромофоры некоторых многоатомных молекул (белков и нуклеиновых кислот) и их спектры поглощения.
- •22.Пути дезактивации возбужденных молекул. Внутренняя конверсия.
- •24.Виды люминесценции как физического явления.
5.Инструментальные (оптические) методы исследований.
Оптические методы исследования
основаны на использовании законов оптики, касающихся природы, распространения и взаимодействия с веществом электромагнитного излучения оптического диапазона (видимый свет, ультрафиолетовое и инфракрасное излучение).
Законы геометрической оптики, характеризующие прямолинейное распространение света в однородных средах, его отражение и преломление в гетерогенных средах, лежат в основе расчета, конструирования и эксплуатации таких широко используемых в медицине приборов, как микроскопы, рефрактометры, медицинские осветители, аппараты для светолечения, эндоскопы, лазерные установки и др.
Для качественного и количественного определения химических элементов в биологических жидкостях и тканях, в лекарственных препаратах и других объектах служит спектрально-эмиссионный анализ. Он заключается в изучении спектра света, который испускают атомы и молекулы, возбужденные различными способами, например нагреванием до высоких температур. Разновидностью эмиссионного анализа является метод пламенной фотометрии, позволяющий определять содержание в биологических образцах ионов калия, натрия, лития и др.
Действие большой группы оптических приборов основано на оптических законах взаимодействия света с веществом. Для измерения рефракции или показателя преломления света исследуемых образцов используют рефрактометры. Их применяют при определении чистоты дистиллированной воды, содержания сахарозы в водных растворах, общего белка в сыворотке крови и пр.
Для измерения поглощения света веществом с целью анализа состава и структуры образца широко применяют фотометрические и спектрофотометрические методы (колориметрию, фотометрию, спектрофотометрию). Приборы, служащие для этой цели, получили название колориметров, фотометров, спектрофотометров. Наиболее широко применяются две группы аппаратурных методов: оптические и электрохимические. Из оптических методов широко
Распространены спектральный ,фотометрический и люминесцентный. Например, в фотометрическом методе определяемое вещество в растворе переводят в окрашенное состояние, после чего определяют светопоглощение раствора. В зависимости от типа измерения светопоглощения различают несколько методов фотометрического анализа:
а)колориметрический анализ заключается в визуальном сравнении интенсивности окраски по отношению к известному стандарту, б)фотометрическийанализ-это анализ, при котором для измерения светопоглощения применяют фотоэлемент со светофильтром. Для данного
типа измерений используют фотометрилифотоэлектроколориметр -ФЭК; в) спектрофотометрический метод это метод, в ходе которого при анализе сложных смесей более точные результаты получаются на спектрофотометре, когда светопоглощение измеряется в узком участке спектра. Область применения фотометрических методов:
-определение содержания примесей в различных технических и природных материалах с точностью до I-0,001%; -определение содержания металлов и неметаллов; -для автоматического и дистанционного контроля.
