- •Основные программные и аппаратные компоненты сети. Понятия «клиент», «сервер», «сетевая служба».
 - •Классификация компьютерных сетей.
 - •Основные характеристики современных компьютерных сетей (производительность, безопасность, отказоустойчивость, расширяемость, масштабируемость, прозрачность, совместимость).
 - •Понятие «топология». Физическая и логическая топология кс. Базовые топологии кс.
 - •Принципы именования и адресации в компьютерных сетях.
 - •Физическая и логическая структуризация сети.
 - •Многоуровневый подход к стандартизации в компьютерных сетях. Понятия «протокол», «интерфейс», «стек протоколов». Характеристика стандартных стеков коммуникационных протоколов.
 - •Эталонная модель взаимодействия открытых систем.
 - •1. Прикладной уровень
 - •2. Представительный уровень (уровень представления данных).
 - •3. Сеансовый уровень
 - •4. Транспортный уровень
 - •5. Сетевой уровень
 - •6. Канальный уровень
 - •7. Физический уровень
 - •Типы кабелей.
 - •Методы передачи дискретных данных на физическом уровне.
 - •Функции канального уровня. Характеристика протоколов и методов передачи канального уровня.
 - •Защита от ошибок в кс. Методы восстановления искаженной и потерянной информации.
 - •Методы коммутации. Коммутация пакетов.
 - •Коммутация каналов. Технологии мультиплексирования в компьютерных сетях.
 - •Общая характеристика протоколов и стандартов локальных сетей. Модель ieee 802.Х.
 - •Классификация методов доступа. Метод доступа csma/cd.
 - •Общая характеристика технологии Ethernet.
 - •Спецификации физической среды Ethernet.
 - •Технология Token Ring. Общая характеристика. Метод доступа. Форматы кадров.
 - •Физический уровень Token Ring.
 - •Технология fddi.
 - •Развитие технологии Ethernet. Fast Ethernet, Gigabit Ethernet.
 - •Функции и классификация сетевых адаптеров.
 - •Параметры настройки и совместимость сетевых адаптеров.
 - •Повторители и концентраторы: основные и дополнительные функции, классификация и конструктивные особенности.
 - •Мосты с маршрутизацией от источника.
 - •Функции, характеристики и типовые схемы применения коммутаторов (свичей) в компьютерных сетях.
 - •Ограничения сетей, построенных на коммутаторах. Технология виртуальных локальных сетей.
 - •Основные функции, характеристики и классификация маршрутизаторов.
 - •Понятие маршрутизации. Таблицы маршрутизации.
 - •Алгоритмы маршрутизации.
 - •Структура стека tcp /ip.
 - •Протокол ip. Структура ip-пакета.
 - •Адресная схема стека tcp/ip. Протоколы разрешения адресов.
 - •Классы ip-адресов.
 - •Специальные ip-адреса.
 - •Построение доменных имен. Серверы имен доменов. Итерационная и рекурсивная схемы разрешения доменных имен.
 - •Понятие «маска сети». Маршрутизация с использованием и без использования масок. Технология cidr.
 - •Протоколы маршрутизации в ip-сетях.
 - •Транспортные протоколы стека tcp/ip.
 - •Диагностические утилиты tcp/ip.
 - •Мониторинг ресурсов и производительности системы.
 - •Глобальные компьютерные сети: структура, функции, типы.
 - •Проколы канального уровня: slip, нdlс, ppp.
 
Проколы канального уровня: slip, нdlс, ppp.
SLIP (Serial Line Internet Protocol) — устаревший сетевой протокол канального уровня эталонной сетевой модели OSI для доступа к сетям стека TCP/IP через низкоскоростные линии связи путём простой инкапсуляции IP-пакетов. Используются коммутируемые соединения через последовательные порты для соединений клиент-сервер типа точка-точка. В настоящее время вместо него используют более совершенный протокол PPP.
История
SLIP был разработан в начале 80-х компанией 3COM. Протокол начал быстро распространяться после включения в ОС Berkeley Unix 4.2 Риком Адамсом (Rick Adams) в1984, так как благодаря ему стало возможным подключение к Интернет через последовательный COM-порт, имевшийся на большинстве компьютеров. Ввиду своей простоты сейчас используется в микроконтроллерах.
Принципы работы
Для установления связи необходимо заранее задать IP-адреса, так как в протоколе SLIP нет системы обмена адресной информацией.
В принимаемом потоке бит SLIP позволяет определить признаки начала и конца пакета IP. По этим признакам SLIP собирает полноценные пакеты IP и передаёт верхнему уровню. При отправлении IP-пакетов происходит обратная операция — они переформатируются и посимвольно отправляются получателю через последовательную линию.
Для передачи необходимо использовать конкретную конфигурацию UART: 8 бит данных (8 data bits), без паритета (no parity), аппаратное управление каналом передачи (EIA hardware flow control) или трёхпроводный нуль-модемный кабель (3-wire null-modem — CLOCAL mode).
Структура кадров
Так как передача данных в последовательных асинхронных линиях связи байт-ориентированная, сначала IP-пакет разбивается на байты (октеты). Границей SLIP-кадра является уникальный флаг END (0xC0). Уникальность этого флага поддерживается байт-стаффингом (byte stuffing) внутри кадра с ESC-последовательностью 0xDB, причём байт END (0xС0) заменяется последовательностью (0xDB, 0xDC), а байт ESC (0xDB) — последовательностью (0xDB, 0xDD).
Недостатки
Нет возможности обмениваться адресной информацией — необходимость предустановки IP-адресов.
Отсутствие индикации типа инкапсулируемого протокола — возможно использование только IP.
Не предусмотрена коррекция ошибок — необходимо выполнять на верхних уровнях, рекомендуется использовать протокол TCP.
Высокая избыточность — из-за использования стартовых и стоповых битов при асинхронной передаче (+20 %), передачи в каждом SLIP-кадре полного IP-заголовка(+20 байт) и полных заголовков верхних уровней, байт-стаффинга.
В некоторых реализациях протокола максимальный размер кадра ограничен 1006 байтами для достижения обратной совместимости с реализацией в Berkeley Unix.
High-Level Data Link Control (HDLC) — бит-ориентированный[1] протокол канального уровня сетевой модели OSI, разработанный ISO.
Текущим стандартом для HDLC является ISO 13239.
HDLC может быть использован в соединениях с множественным доступом, но в настоящее время в основном используется в соединениях точка-точка с использованием асинхронного сбалансированного режима (ABM).
Типы станций
Первичная (ведущая) станция (Primary terminal) ответственна за управление каналом и восстановление его работоспособности. Она производит кадры команд. В соединениях точка-многоточка поддерживает отдельные связи с каждой из вторичных станций.
Вторичная (ведомая) станция (Secondary terminal) работает под контролем ведущей, отвечая на её команды. Поддерживает только 1 сеанс связи.
Комбинированная станция (Combined terminal) сочетает в себе функции как ведущей, так и ведомой станций. Производит и команды и ответы. Только соединения точка-точка.
Логические состояния
Каждая из станций в каждый момент времени находится в одном из 3 логических состояний :
Состояние логического разъединения (LDS — Logical Disconnect State)
Если вторичная станция находится в режиме нормального разъединения (NDM), то она может принимать кадры только после получения явного разрешения от первичной. Если же в асинхронном режиме разъединения (ADM), то вторичная станция может самовольно инициировать передачу.
Состояние инициализации (IS — Initialization State)
Используется для передачи управления на удалённую комбинированную станцию и для обмена параметрами между удалёнными станциями.
Состояние передачи информации (ITS — Information Transfer State)
Всем станциям разрешено вести передачу и принимать информацию. Станции могут находиться в режимах NRM, ARM, ABM.
Режимы состояния передачиHDLC поддерживает три режима логического соединения, отличающиеся ролями взаимодействующих устройств:
Режим нормального ответа (Normal Response Mode, NRM) требует инициации передачи в виде явного разрешения на передачу от первичной станции. После использования канала вторичной станцией (ответа на команду первичной), для продолжения передачи она обязана ждать другого разрешения. Для выбора права на передачу первичная станция проводит круговой опрос вторичных. Используется в основном в соединениях точка-многоточка.
Режим асинхронного ответа (Asynchronous Response Mode, ARM) даёт возможность вторичной станции самой инициировать передачу. В основном используется в соединениях типа кольцо и многоточечных с неизменной цепочкой опроса, так как в этих соединениях одна вторичная станция может получить разрешение на передачу от другой вторичной и в ответ начать передачу. То есть разрешение на передачу передаётся по типу маркера (token). За первичной станцией сохраняются обязанности по инициализации линии, определению ошибок передачи и логическому разъединению. Позволяет уменьшить накладные расходы, связанные с началом передачи.
Асинхронный сбалансированный режим (Asynchronous Balanced Mode, ABM) используется комбинированными станциями. Передача может быть инициирована с любой стороны, может происходить в полном дуплексе. В режиме ABM оба устройства равноправны и обмениваются кадрами, которые делятся на кадры-команды и кадры-ответы.
Конфигурации канала
Для обеспечения совместимости между станциями, которые могут менять свой статус(тип), в протоколе HDLC предусмотрены 3 конфигурации канала:
Несбалансированная конфигурация (UN — Unbalanced Normal) обеспечивает работу 1 первичной и одной или нескольких вторичных станций в (симплексном)полудуплексном и полнодуплексном режимах, с коммутируемым или некоммутируемым каналом.
Симметричная конфигурация (UA — Unbalanced Asynchronous) обеспечивает взаимодействие двух двухточечных несбалансированных станций. Используется 1 канал передачи, в который мультиплексируются и команды и ответы. В данное время не используется.
Сбалансированная конфигурация (BA — Balanced Asynchronous) состоит из 2 комбинированных станций. Передача в(симплексном) полудуплексном иполнодуплексном режимах, с коммутируемым или некоммутируемым каналом. Каждая станция несёт одинаковую ответственность за управление каналом.
Кадры Кадры HDLC можно передавать, используя синхронные и асинхронные соединения. В самих соединениях нет механизмов определения начала и конца кадра, для этих целей используется уникальная в пределах протокола битовая последовательность (FD — Frame Delimiter) '01111110'(0x7E в шестнадцатеричном представлении), помещаемая в начало и конец каждого кадра. Уникальность флага гарантируется использованием битстаффинга в синхронных соединениях и байтстаффинга в асинхронных. Битстаффинг — вставка битов, здесь — бита 0 после 5 подряд идущих битов 1. Битстаффинг работает только во время передачи информационного поля (поля данных) кадра. Если передатчик обнаруживает, что передано подряд пять единиц, то он автоматически вставляет дополнительный ноль в последовательность передаваемых битов (даже если после этих пяти единиц и так идёт ноль). Поэтому последовательность 01111110 никогда не появится в поле данных кадра. Аналогичная схема работает в приемнике и выполняет обратную функцию. Когда после пяти единиц обнаруживается ноль, он автоматически удаляется из поля данных кадра. В байтстаффинге используется escape-последовательность, здесь — '01111101'(0x7D в шестнадцатеричном представлении), то есть байт FD(0x7E) в середине кадра заменяется последовательностью байтов (0x7D, 0x5E), а байт (0x7D) — последовательностью байтов (0x7D, 0x5D).
Во время простоя среды передачи при синхронном соединении последовательность 0x7E ('01111110') постоянно передаётся по каналу для поддержания битовой синхронизации. Может иметь место совмещение последнего бита 0 одного флага и начального бита 0 следующего. Время простоя также называется межкадровым временны́м заполнением.
Структура кадров
Структура кадра HDLC, включая флаги FD:
Флаг FD  | 
		Адрес  | 
		Управляющее поле  | 
		Информационное поле  | 
		FCS  | 
		Флаг FD  | 
	
8 бит  | 
		8 бит  | 
		8 или 16 бит  | 
		0 или более бит, кратно 8  | 
		16 бит  | 
		8 бит  | 
	
Флаги FD — открывающий и закрывающий флаги, представляющие собой коды 01111110, обрамляют HDLC-кадр, позволяя приемнику определить начало и конец кадра. Благодаря этим флагам в HDLC-кадре отсутствует поле длины кадра. Иногда флаг конца одного кадра может (но не обязательно) быть начальным флагом следующего кадра.
Адрес выполняет свою обычную функцию идентификации одного из нескольких возможных устройств только в конфигурациях точка-многоточка. В двухточечной конфигурации адрес HDLC используется для обозначения направления передачи — из сети к устройству пользователя (10000000) или наоборот (11000000).
Управляющее поле занимает 1 или 2 байта. Его структура зависит от типа передаваемого кадра. Тип кадра определяется первыми битами управляющего поля: 0 — информационный, 10 — управляющий, 11 — ненумерованный тип. В структуру управляющего поля кадров всех типов входит бит P/F, он по-разному используется в кадрах-командах и кадрах-ответах. Например, станция-приемник при получении от станции-передатчика кадра-команды с установленным битом P немедленно должна ответить управляющим кадром-ответом, установив бит F.
Информационное поле предназначено для передачи по сети пакетов протоколов вышележащих уровней — сетевых протоколов IP, IPX, AppleTalk, DECnet, в редких случаях — прикладных протоколов, когда те выкладывают свои сообщения непосредственно в кадры канального уровня. Информационное поле может отсутствовать в управляющих кадрах и некоторых ненумерованых кадрах.
Поле FCS (Frame Check Sequence) — контрольная последовательность, необходимая для обнаружения ошибок передачи. Её вычисление в основном производится методом циклического кодирования с производящим полиномом X16+X12+X5+1 (CRC-16) в соответствии с рекомендацией CCITT V.41. Полученная CRC побитово инвертируется и записывется в обратной последовательности. Это позволяет обнаруживать всевозможные кортежи ошибок длиной до 16 бит вызываемые одиночной ошибкой, а также 99,9984 % всевозможных более длинных кортежей ошибок. FCS составляется по полям Адрес, Управляющее поле, Информационное поле. В редких случаях используются другие методы циклического кодирования. После просчёта FCS на стороне приёмника он отвечает положительной или отрицательной квитанцией. Повтор кадра передающей стороной выполняется по приходу отрицательной квитанции или по истечении тайм-аута.
Типы кадров
I-кадры (информационные кадры, кадры данных)
Предназначены для передачи данных пользователя. В процессе передачи информационных блоков осуществляется их нумерация в соответствии с алгоритмом скользящего окна. После установления соединения данные и положительные квитанции начинают передаваться в информационных кадрах. Логический канал HDLC является дуплексным, так что информационные кадры, а значит, и положительные квитанции могут передаваться в обоих направлениях. Если же потока информационных кадров в обратном направлении нет или же нужно передать отрицательную квитанцию, то используются управляющие кадры. При работе HDLC для обеспечения надёжности передачи используется скользящее окно размером в 7 кадров (при размере управляющего поля 1 байт) или 127 (при размере управляющего поля 2 байта). Для поддержания алгоритма окна в информационных кадрах станции-отправителя отводится 2 поля:
N(S) — номер отправляемого кадра;
N(R) — номер кадра, который станция ожидает получить от своего партнера по диалогу.
Предположим для определенности, что станция А отправила станции В информационный кадр с некоторыми значениями NA(S) и NA(R). Если в ответ на этот кадр приходит кадр от станции В, в котором номер посланного этой станцией кадра NB(S) совпадает с номером ожидаемого станцией А кадра NA(R), то передача считается корректной. Если станция А принимает кадр-ответ, в котором номер отправленного кадра NB(S) неравен номеру ожидаемого NA(R), то станция А этот кадр отбрасывает и посылает отрицательную квитанцию REJ (отказ) с номером NA(R). Приняв отрицательную квитанцию, станция В обязана повторить передачу кадра с номером NA(R), а также всех кадров с большими номерами, которые она уже успела отослать, пользуясь механизмом скользящего окна.
I-кадры также содержат бит опрос/ответ P/F (poll/final). В режиме NRM ведущий терминал использует бит P для опроса, ведомый — бит F в последнем I-кадре ответа. В режимах ARM и ABM биты P/F используются для форсирования ответа.
Команда/ Ответ  | 
		Описание  | 
		Формат упр. поля 8…7…6…5…4…3…2…1…..  | 
	
C/R  | 
		Данные пользователя  | 
		.-N(R)-… P/F…..-N(S)-..0  | 
	
S-кадры (управляющие
Используются для контроля потока ошибок передачи. В управляющих кадрах передаются команды и ответы в контексте установленного логического соединения, в том числе запросы на повторную передачу искаженных информационных блоков:
Готов к Приёму (RR)
Используется как положительная квитанция (до N(r)-1).
Ведущая станция может сделать опрос, установив бит P.
Ведомая станция на опрос может ответить кадром с установленным F битом, если у неё нет данных для передачи.
Не готов к Приёму (RNR)
Используется как положительная квитанция и запрос остановить передачу I-кадров до получения следующего кадра RR.
Ведущая или Комбинированная станции могут установить бит P для уточнения статуса приёма ведомой/комбинированной станции.
Ведомая/комбинированная станции могут ответить установкой бита P как индикации занятости станции.
Неприем (REJ)
Часто используется как отрицательная квитанция приемника
Неприем кадров последнего окна (повтор передачи с кадра N(r))
Выборочный Неприем(SREJ)
Неприем конкретного кадра (повтор передачи одного кадра)
PPP (англ. Point-to-Point Protocol) — двухточечный протокол канального уровня (Data Link) сетевой модели OSI. Обычно используется для установления прямой связи между двумя узлами сети, причем он может обеспечить аутентификацию соединения, шифрование (с использованием ECP, RFC 1968) и сжатие данных. Используется на многих типах физических сетей: нуль-модемный кабель, телефонная линия, сотовая связь и т. д.
Часто встречаются подвиды протокола PPP, такие как Point-to-Point Protocol over Ethernet (PPPoE), используемый для подключения по Ethernet, и иногда через DSL; и Point-to-Point Protocol over ATM (PPPoA), который используется для подключения по ATM Adaptation Layer 5 (AAL5), который является основной альтернативой PPPoEдля DSL.
PPP представляет собой целое семейство протоколов: протокол управления линией связи (LCP), протокол управления сетью (NCP), протоколы аутентификации (PAP,CHAP), многоканальный протокол PPP (MLPPP).
Основные характеристикиPPP протокол был разработан на основе HDLC и дополнен некоторыми возможностями, которые до этого встречались только в проприетарных протоколах.
Автоматическая настройка
Link Control Protocol (LCP) обеспечивает автоматическую настройку интерфейсов на каждом конце (например, установка размера пакетов) и опционально проводит аутентификацию. Протокол LCP работает поверх PPP, то есть начальная PPP связь должна быть до работы LCP.
RFC 1994 описывает Challenge-handshake authentication protocol (CHAP), который является предпочтительным для соединений с провайдерами. Уже устаревший Password authentication protocol (PAP) всё еще иногда используется.
Другим вариантом аутентификации через PPP является Extensible Authentication Protocol (EAP).[1]
После того, как соединение было установлено, поверх него может быть настроена дополнительная сеть. Обычно используется Internet Protocol Control Protocol (IPCP), хотя Internetwork Packet Exchange Control Protocol (IPXCP) и AppleTalk Control Protocol (ATCP) были когда-то популярны. Internet Protocol Version 6 Control Protocol(IPv6CP) получит большее распространение в будущем, когда IPv6 заменит IPv4 как основной протокол сетевого уровня.
Многопротокольная поддержка
PPP позволяет работать нескольким протоколам сетевого уровня на одном канале связи. Другими словами, внутри одного PPP-соединения могут передаваться потоки данных различных сетевых протоколов (IP, Novell IPX и т. д.), а также данные протоколов канального уровня локальной сети. Для каждого сетевого протокола используется Network Control Protocol (NCP) который его конфигурирует (согласовывает некоторые параметры протокола).
Обнаружение закольцованных связей
PPP обнаруживает закольцованные связи, используя особенность, включающую magic numbers. Когда узел отправляет PPP LCP сообщения, они могут включать в себя магическое число. Если линия закольцована, узел получает сообщение LCP с его собственным магическим числом вместо получения сообщения с магическим числом клиента.
Наиболее важные особенности
Link Control Protocol устанавливает и завершает соединения, позволяя узлам определять настройки соединения. Также он поддерживает и байто-, и бито-ориентированные кодировки.
Network Control Protocol используется для определения настроек сетевого уровня, таких как сетевой адрес или настройки сжатия, после того как соединение было установлено.
Конфигурационные опции PPP
Так как в PPP входит LCP протокол, то можно управлять следующими LCP параметрами:
Аутентификация. RFC 1994 описывает Challenge Handshake Authentication Protocol (CHAP), который является предпочтительным для проведения аутентификации в PPP, хотя Password Authentication Protocol (PAP) иногда еще используется. Другим вариантом для аутентификации является Extensible Authentication Protocol (EAP).
Сжатие. Эффективно увеличивает пропускную способность PPP соединения, за счет сжатия данных в кадре. Наиболее известными алгоритмами сжатия PPP кадров являются Stacker и Predictor.
Обнаружение ошибок. Включает Quality-Protocol и помогает выявить петли обратной связи посредством Magic Numbers RFC 1661.
Многоканальность. Multilink PPP (MLPPP, MPPP, MLP) предоставляет методы для распространения трафика через несколько физических каналов, имея одно логическое соединение. Этот вариант позволяет расширить пропускную способность и обеспечивает балансировку нагрузки.
PPP кадр
Каждый кадр PPP всегда начинается и завершается флагом 0x7E. Затем следует байт адреса и байт управления, которые тоже всегда равны 0xFF и 0x03 соответственно. В связи с вероятностью совпадения байтов внутри блока данных с зарезервированными флагами существует система автоматической корректировки «проблемных» данных с последующим восстановлением.
Флаг 0x7E  | 
		Адрес 0xFF  | 
		Управление 0x03  | 
		Данные  | 
		Контрольная сумма  | 
		Флаг 0x7E  | 
	
1  | 
		1  | 
		1  | 
		1494  | 
		2  | 
		1  | 
	
Поля «Флаг», «Адрес» и «Управление» (заголовок кадра HDLC) могут быть опущены и не передаваться, но это если PPP в процессе конфигурирования (используя LCP) договорится об этом. Если PPP инкапсулирован в L2TP-пакеты, то поле «Флаг» не передается.
Тип кадра данных в PPP
Поле «Данные» PPP кадра, в свою очередь, разбито ещё на два поля: флаг протокола (который определяет тип данных до конца кадра) и сами данные.
Протокол 0xХХХХ  | 
		Данные  | 
	
1 или 2  | 
		0 и более  | 
	
Флаги протокола от 0x0XXX до 0x3XXX идентифицируют протоколы сетевого уровня. Например, IP протоколу соответствует флаг 0x0021, а Novell IPX — 002B.
Флаги протокола от 0x4XXX до 0x7XXX идентифицируют протоколы с низким уровнем трафика.
Флаги протокола от 0x8XXX до 0xBXXX идентифицируют протоколы управления сетью (NCP).
Флаги протокола от 0xCXXX до 0xEXXX идентифицируют управляющие протоколы. Например, 0xC021 обозначает, что кадр содержит данные протокола управления соединением LCP.
Активации канала PPP и его фазы
  
Диаграмма, изображающая фазы PPP по RFC 1661.
Фазы PPP по RFC 1661 указаны ниже:
Link Dead. Эта фаза наступает, когда связь нарушена, либо одна из сторон указала не подключаться (например, пользователь завершил модемное соединение.)
Link Establishment Phase. В данной фазе проводится настройка Link Control. Если настройка была успешной, управление переходит в фазу аутентификации, либо в фазу Network-Layer Protocol, в зависимости от того, требуется ли аутентификация.
Authentication Phase. Данная фаза является необязательной. Она позволяет сторонам проверить друг друга перед установкой соединения. Если проверка успешна, управление переходит в фазу Network-Layer Protocol.
Network-Layer Protocol Phase. В данной фазе вызывается NCP для желаемого протокола. Например, IPCP используется для установки IP сервисов. Передача данных по всем успешно установленным протоколам также проходит в этой фазе. Закрытие сетевых протоколов тоже включается в данную фазу.
Link Termination Phase. Эта фаза закрывает соединение. Она вызывается в случае ошибок аутентификации, если было настолько много ошибок контрольных сумм, что обе стороны решили закрыть соединение, если соединение неожиданно оборвалось, либо если пользователь отключился. Данная фаза пытается закрыть все настолько аккуратно, насколько возможно в данных обстоятельствах.
