- •Основные программные и аппаратные компоненты сети. Понятия «клиент», «сервер», «сетевая служба».
- •Классификация компьютерных сетей.
- •Основные характеристики современных компьютерных сетей (производительность, безопасность, отказоустойчивость, расширяемость, масштабируемость, прозрачность, совместимость).
- •Понятие «топология». Физическая и логическая топология кс. Базовые топологии кс.
- •Принципы именования и адресации в компьютерных сетях.
- •Физическая и логическая структуризация сети.
- •Многоуровневый подход к стандартизации в компьютерных сетях. Понятия «протокол», «интерфейс», «стек протоколов». Характеристика стандартных стеков коммуникационных протоколов.
- •Эталонная модель взаимодействия открытых систем.
- •1. Прикладной уровень
- •2. Представительный уровень (уровень представления данных).
- •3. Сеансовый уровень
- •4. Транспортный уровень
- •5. Сетевой уровень
- •6. Канальный уровень
- •7. Физический уровень
- •Типы кабелей.
- •Методы передачи дискретных данных на физическом уровне.
- •Функции канального уровня. Характеристика протоколов и методов передачи канального уровня.
- •Защита от ошибок в кс. Методы восстановления искаженной и потерянной информации.
- •Методы коммутации. Коммутация пакетов.
- •Коммутация каналов. Технологии мультиплексирования в компьютерных сетях.
- •Общая характеристика протоколов и стандартов локальных сетей. Модель ieee 802.Х.
- •Классификация методов доступа. Метод доступа csma/cd.
- •Общая характеристика технологии Ethernet.
- •Спецификации физической среды Ethernet.
- •Технология Token Ring. Общая характеристика. Метод доступа. Форматы кадров.
- •Физический уровень Token Ring.
- •Технология fddi.
- •Развитие технологии Ethernet. Fast Ethernet, Gigabit Ethernet.
- •Функции и классификация сетевых адаптеров.
- •Параметры настройки и совместимость сетевых адаптеров.
- •Повторители и концентраторы: основные и дополнительные функции, классификация и конструктивные особенности.
- •Мосты с маршрутизацией от источника.
- •Функции, характеристики и типовые схемы применения коммутаторов (свичей) в компьютерных сетях.
- •Ограничения сетей, построенных на коммутаторах. Технология виртуальных локальных сетей.
- •Основные функции, характеристики и классификация маршрутизаторов.
- •Понятие маршрутизации. Таблицы маршрутизации.
- •Алгоритмы маршрутизации.
- •Структура стека tcp /ip.
- •Протокол ip. Структура ip-пакета.
- •Адресная схема стека tcp/ip. Протоколы разрешения адресов.
- •Классы ip-адресов.
- •Специальные ip-адреса.
- •Построение доменных имен. Серверы имен доменов. Итерационная и рекурсивная схемы разрешения доменных имен.
- •Понятие «маска сети». Маршрутизация с использованием и без использования масок. Технология cidr.
- •Протоколы маршрутизации в ip-сетях.
- •Транспортные протоколы стека tcp/ip.
- •Диагностические утилиты tcp/ip.
- •Мониторинг ресурсов и производительности системы.
- •Глобальные компьютерные сети: структура, функции, типы.
- •Проколы канального уровня: slip, нdlс, ppp.
Понятие «маска сети». Маршрутизация с использованием и без использования масок. Технология cidr.
Эффективным средством структуризации IP-сетей являются маски. Маски позволяют разделить одну сеть на несколько подсетей. Маски одинаковой длины используются для деления сети на подсети равного размера, а маски переменной длины - для деления сети на подсети разного размера. Использование масок модифицирует алгоритм маршрутизации, поэтому в этом случае предъявляются особые требования к протоколам маршрутизации в сети, к техническим характеристикам маршрутизаторов и процедурам их конфигурирования.
Часто администраторы сетей испытывают неудобства из-за того, что количество централизованно выделенных им номеров сетей недостаточно для того, чтобы структурировать сеть надлежащим образом, например разместить все слабо взаимодействующие компьютеры по разным сетям. В такой ситуации возможны два пути. Первый из них связан с получением от InterNIC или поставщика услуг Internet дополнительных номеров сетей. Второй способ, употребляющийся чаще, связан с использованием технологии масок, которая позволяет разделять одну сеть на несколько сетей.
Допустим, администратор получил в свое распоряжение адрес класса В: 129.44.0.0. Он может организовать сеть с большим числом узлов, номера которых он может брать из диапазона 0.0.0.1-0.0.255.254 (с учетом того, что адреса из одних нулей и одних единиц имеют специальное назначение и не годятся для адресации узлов). Однако ему не нужна одна большая неструктурированная сеть, производственная необходимость диктует администратору другое решение, в соответствии с которым сеть должна быть разделена на три отдельных подсети, при этом трафик в каждой подсети должен быть надежно локализован. Это позволит легче диагностировать сеть и проводить в каждой из подсетей особую политику безопасности.
Суть технологии CIDR заключается в следующем. Каждому поставщику услуг Internet должен назначаться непрерывный диапазон в пространстве IP-адресов. При таком подходе адреса всех сетей каждого поставщика услуг имеют общую старшую часть - префикс, поэтому маршрутизация на магистралях Internet может осуществляться на основе префиксов, а не полных адресов сетей. Агрегирование адресов позволит уменьшить объем таблиц в маршрутизаторах всех уровней, а следовательно, ускорить работу маршрутизаторов и повысить пропускную способность Internet. Значительная роль в будущем IP-сетей отводится технологии бесклассовой междоменной маршрутизации (CIDR), которая решает две основные задачи. Первая состоит в более экономном расходование адресного пространства - благодаря CIDR поставщики услуг получают возможность «нарезать» блоки разных размеров из выделенного им адресного пространства в точном соответствии с требованиями каждого клиента. Вторая задача заключается в уменьшении числа записей в таблицах маршрутизации за счет объединения маршрутов - одна запись в таблице маршрутизации может представлять большое количество сетей с общим префиксом.
Протоколы маршрутизации в ip-сетях.
Глобальная компьютерная сеть Internet изначально строилась по следующей схеме: магистральная сеть, к ней присоединяются сети, называемые автономные системы. Магистральная сеть тоже является автономной системой. Такой подход удобен, так как детальная топологическая информация остается внутри автономной системы, а саму автономную систему как единое целое для остальной части Internetпредставляют внешние шлюзы (маршрутизаторы, с помощью которых автономные системы присоединяются к магистральной сети). Для образования подсетей внутри автономной системы используются внутренние шлюзы.
Соответственно, протоколы маршрутизации, используемые в Internet, делятся на внешние и внутренние.Внешние протоколы маршрутизации (EGP, BGP) переносят маршрутную информацию между автономными системами. Внутренние протоколы маршрутизации (RIP, OSPF, IS-IS) применяются только в пределах автономной системы. Изменение протоколов маршрутизации и маршрутов внутри автономной системы не влияет на работу других автономных систем.
Протокол OSPF (Open Shortest Path First – открытый протокол «кратчайший путь первым») принят в 1991 году. Это современный протокол, ориентированный на работу в больших гетерогенных сетях со сложной топологией, включающей петли. Основан он на алгоритме состояния связей, который обладает высокой устойчивостью к изменениям топологии сети.
