Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
пр. электроника 1.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
524.73 Кб
Скачать

7 Билет

Высокочастотные диоды. Характеристики и параметры высокочастотных диодов. Примеры применения.

Обратные связи в усилителях. Влияние отрицательной обратной связи на характеристики усилителя.

RS -Триггеры. Определение, основные характеристики.

1. Высокочастотные диоды предназначены для использования в качестве ключевых элементов в импульсных схемах. Для диода состояние включено соответствует прямому смещению р-и-перехода, состояние выключено - обратному. Чем меньше их диффузионная емкость, тем быстрее протекают переходные процессы в диоде, тем меньше время переключения т, тем больше быстродействие. Для уменьшения диффузионной емкости диода необходимо уменьшить время жизни неравновесных носителей, что достигается увеличением удельной проводимости базы диода.  Высокочастотные диоды предназначены для работы в различных схемах преобразования элекрических сигналов в диапазоне частот до нескольких сотен мегагерц. Точечные диоды отличаются от плоскостных более сложными процессами, протекающими в них при выпрямлении. В большинстве случаев основой точечных диодов служиг кристалл германия, в который упирается тонкая металлическая игла. Точечный контакт получают путем специальной формовки. Через диод пропускается несколько сравнительно мощных, но-коротких импульсов прямого тока. При этом возникает сильный местный нагрев контакта и происходит сплавление кончика иглы с полупроводником. Процесс формовки сопровождается изменением типа электропроводности части исходного полупроводника, которая примыкает к контакту. В месте контакта иглы и полупроводниковой пластины возникает р-л-переход.

Основным параметром высокочастотных диодов является емкость между выводами. Снижение емкости диодов позволяет повысить скорость переключения и расширить диапагон рабочих частот. На очень высоких частотах максимальные амплитуды прямого и обратного токов становятся практически одинаковыми и диод теряет выпрямительные свойства. По диапазонам рабочих частот высокочастотные диоды делятся на две подгруппы: диоды, рассчитанные на рабочие частоты до 300 Мгц, и диоды, рассчитанные на рабочие частоты от 300 до 1 000 Мгц.

2. Отрицательная обратная связь (ООС) — вид обратной связи, при котором изменение выходного сигнала системы приводит к такому изменению входного сигнала, которое противодействует первоначальному изменению.

Иными словами, отрицательная обратная связь — это такое влияние выхода системы на вход («обратное»), которое уменьшает действие входного сигнала на систему.

Если обратная связь может полностью компенсировать («заглушить») входящий сигнал, система относится к классу регуляторов (поплавковый механизм) или следящих усилителей (гидроусилитель).

Если же обратная связь компенсирует только часть входного сигнала (см. коэффициент обратной связи), то влияние входа на систему (и выход) будет меньше, но более стабильное («чёткое»), так как случайные изменения параметров системы (и, соответственно, колебания выхода) будут в значительной степени скомпенсированы через линию обратной связи.

Отрицательная обратная связь делает систему более устойчивой к случайному изменению параметров.

Обратная связь предполагает передачу части энергии выходного сигнала на вход электронного устройства или усилителя. Структурная схема усилителя, охваченного обратной связью, приведена на рисунке 1.

 

Рисунок 1. Структурная схема усилителя, охваченного обратной связью

Первоначально обратная связь использовалась для увеличения коэффициента усиления. В этом случае напряжение или ток с выхода усилителя подается на его вход синфазно с входным колебанием (сдвиг фаз в петле обратной связи должен быть равен 0° или 2π×n). Такая обратная связь получила название положительная обратная связь. Однако скоро выяснилось, что положительная обратная связь приводит к нестабильности работы усилителя и ее стали избегать.

Отрицательная обратная связь уменьшает коэффициент усиления усилителя. В начале двадцатого века это было крупным недостатком, однако в настоящее время это легко компенсируется добавлением одного или нескольких каскадов усиления. В то же самое время отрицательная обратная связь в усилителях приводит к улучшению многих его параметров, поэтому она нашла широкое применение.

В зависимости от способа получения сигнала обратной связи на выходе усилителя она может быть по напряжению и по току. Структурная схема отрицательной обратной связи по напряжению приведена на рисунке 2.

  Рисунок 2. Структурная схема усилителя, охваченного обратной связью по напряжению

Отрицательная обратная связь по напряжению уменьшает выходное сопротивление усилилителя. Выходное сопротивление усилителя, охваченного отрицательной обратной связью по напряжению можно определить по следующей формуле:

Триггер (триггерная система) — класс электронных устройств, обладающих способностью длительно находиться в одном из двух устойчивых состояний и чередовать их под воздействием внешних сигналов. Каждое состояние триггера легко распознаётся по значению выходного напряжения. По характеру действия триггеры относятся к импульсным устройствам — их активные элементы (транзисторы, лампы) работают в ключевом режиме, а смена состояний длится очень короткое время. RS-триггертриггер — триггер, который сохраняет своё предыдущее состояние при нулевых входах и меняет своё выходное состояние при подаче на один из его входов единицы. При подаче единицы на вход S выходное состояние становится равным логической единице. А при подаче единицы на вход R выходное состояние становится равным логическому нулю. Состояние, при котором на оба входа R и S одновременно поданы логические единицы не определено и зависит от реализации, например в триггере на элементах «или-не» оба выхода переходят в состояние логического «0», которое является неустойчивым и переходит в одно из устойчивых состояний при снятии управляющего сигнала с одного из входов. RS-триггер используется для создания сигнала с положительным и отрицательным фронтами, отдельно управляемыми посредством стробов, разнесённых во времени. Также RS-триггеры часто используются для исключения так называемого явления дребезга контактов.

Условное графическое обозначение асинхронного RS-триггера