Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Модель Гигиена окружающей среды.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
445.05 Кб
Скачать

I. Бактериальные инфекции.

  • 1) Антропонозные заболевания: холера, брюшной тиф, паратифы, дизентерия, колиэнтериты

•2)    Зоонозные заболевания: бруцеллез, туляремия, лептоспироз, неко­торые формы туберкулеза.

  • II. Вирусные инфекции инфекционный гепатит, полиомиелит, аденови­русная инфекция.

III.        Паразитарные зболевания.

1) Плоские черви. Класс сосальщики.

  • 1. Фасциолез {печеночный сосальщик). Заражение при упот­реблении сырой зараженной воды или овощей, помытый такой водой.

  • 2. Шистосомозы {шистозомы или кровяные сосальщики). Паразиты активно проникают чеез кожу во время купания или работы в воде, распространены в жарких странах.

2) Круглые черви.

  • 1. Геогельминтозы: аскаридоз (аскариды), энтеробиоз (острицы), трихоцефалез (власоглав), анкилостомоз (кривоголовка), некатороз (некатор),.

  • 2. Биогельминтозы: дракункулез (ришта)

3) Простейшие: лямблиоз (лямблии) и др.

Надо отметить, что передача инфекции через воду возможна при

  • 1) Использовании для питья неочищенной речной воды

  • 2) Нарушениях в обработке воды на водопроводных станциях

  • 3) Загрязнении используемых для питья подземных вод из-за

  • - неправильной организации выгребов

  • - забора воды из колодцев загрязненными ведрами

Наилучший способ обеспечения безопасности питьевой воды-это охрана источников водоснабжения от загрязнения(от загрязнения отходами жизнедеятельности чел-ка и животных. Питьевая вода должна удовлетворять след основным гигиеническим требованиям:1Должна быть прозрачной,бесцветной,не иметь запаха и обладать приятным ,освежающим вкусом.2Должна содержать мин вещ-ва и микроэлементы.3Не должна иметь в своем составе токсических и радиоактивных вещ-в в концентрациях опасных для чел-ка.4Должна быть безопасной в эпидемиологическом отношении.

19. Эндемические заболевания, связанные с нестандартным солевым и микроэлементным составом воды; профилактика.

Солевой и микроэлементный состав воды и болезни

С давних пор внимание исследователей привлекали минеральный состав воды и заболевания, возникающие вследствие его нарушения.

В зависимости от содержания ионов природные воды делятся на пресные, минерализация которых не превышает 1 г, минерализованные - от 1 до 50 г и рассолы - свыше 50 г на кубический дециметр. Гигиенический норматив минерализации питьевой воды по сухому остатку составляет 1 г на кубический дециметр. Минерализация грунтовых вод на территории СНГ возрастает с Севера на Юг. Изучение влияния воды при минерализации 1,5-3 г на кубический дециметр сухого остатка показало ее отрицательное влияние на секреторную функцию желудка и на водно-солевой баланс, при котором вода задерживается в организме и могут возникнуть отеки на ногах и под глазами.

В. И. Вернадский разработал в свое время теорию биогеохимических провинций - географических районов, где фактором определенной группы заболеваний является минеральный состав воды, характерный для данной местности. В воде найдено 65 микроэлементов, содержащихся в тканях животных и растении. Доказано важное значение для организма животных и человека двадцати из них . Наиболее изучено влияние на организм фтора. Среднесуточная потребность в нем составляет 2000-3000 мкг, причем, 70% этого количества человек получает с водой, и только 30% - с пищей. При длительном употреблении воды, бедной солями фтора, развивается кариес. Избыточное содержание фтора ведет к другому заболеванию зубов - флюорозу, характеризующемуся своеобразной крапчатостыо и буроватой окраской зубной эмали. Иногда такой процесс может привести к полному разрушению зубов.

Оказалось, что нитраты не только являются показателем загрязнения воды, но и способны вызывать нарушения в обмене гемоглобина, в результате чего развивается нарушение дыхания на клеточном уровне.

С недостаточным количеством иода в воде связывают развитие эндемического зоба - заболевания, которое проявляется увеличением щитовидной железы, нередко пучеглазием. Коррекцию дефицита иода осуществляют йодированием соли.

Как видно из изложенного, водоочистительные фильтры могут играть положительную роль в случае избытка в воде определенных микроэлементов.

Заболевания неинфекц природы могут быть связаны с особенностями природного химического состава воды и антропогенным изменением.

Биогеохимические провинции – это районы, характеризующиеся избытком или недостатком отдельных микроэлементов в воде, почве, растениях (согласно учению академика Вернадского и Виноградова).

Заболевания неинфекц природы, связанные с употреблением недоброкачественной воды:

Флюороз (избыточное содержание F в питьевой воде) – развивается деструкция костной ткани; кариес – при недостатке фтора.

Эндемический зоб (недостаточное содержание йода) – разрастание соединительной ткани щитовидной железы. Чаще всего за­болевание наблюдается в горной местности, где население ис­пользует для питьевых целей и в сельскохозяйственном производ­стве (орошение посевов, животноводство) метеорологическую воду (дождевую, накапливаемую в резервуарах, образующуюся при та­янии снега и ледников), имеющую низкий уровень минерализа­ции, в том числе и низкое содержание йода или его полное отсут­ствие. Основная причина развития заболевания — низкое содер­жание йода в продуктах питания (суточная потребность до 120 мг). Недостаточное поступление с питьевой водой имеет лишь сиг­нальное значение. При использовании в питании населения при­возных продуктов и йодированной соли в пище заболевание, как правило, не развивается.

Водно-нитратная метгемоглобилемия, или токсический цианоз (избыточное содержание нитратов; норма не более 35 мг/л). Это заболевание особенно часто наблюдается у детей грудного возраста, находящихся на искусственном вскармливании, чаще в сельских районах при использовании колодезной воды для разве­дения детских питательных смесей.

Водно-нитратная метгемоглобинемия отмечается не только у детей, но и у взрослых. Содержание нитратов (NO3) в воде из года в год растет за счет органических загрязнений поверхностных и подземных водоисточников, а также нерационального исполь­зования азотсодержащих минеральных удобрений. Этому может спо­собствовать и неправильное использование сточных вод. Вредное воздействие нитратов проявляется тогда, когда про­исходит восстановление нитратов в нитриты, а их всасывание приводит к образованию метгемоглобина крови. Поражению мла­денцев способствуют дисбактериоз и слабость метгемоглобиновой редуктазы, наблюдаемой в этом возрасте.

Болезнь Минимата (поступление в организм ртути ® воздействие на ЦНС).

Микроэлементозы – группа эндемических заболеваний, связанных с дисбалансом микроэлементов. Например, уролитиаз, возникающий на определенных территориях (Приамурье, некоторые районы Башкортостана), обусловленный нарушени­ем соотношения отдельных химических элементов в почве, гор­ных породах, а вследствие этого в воде и местных продуктах пи­тания.

20. Гигиенические требования к питьевой воде; методы улучшения её качества.

Основными нормативными документами в области централизованного хозяйственно-питьевого водоснабжения являются:

1. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Санитарные правила и нормы СанПиН 2.1.4.1074 – 01 «Питьевая вода».

2. Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарные правила и нормы СанПиН 2.1.4.1175 - 02. «Санитарная охрана источников».

В СанПиНе 2.1.4.1074 – 01 «Питьевая вода» приведены нормативные показатели органолептических физических свойств, бактериального состава и химических веществ, встречающихся в природных водах или добавляемых в воду в процессе её обработки, а также нормативы более 1500 химических веществ, которые могут попадать в воду в результате промышленного, сельскохозяйственного, бытового или иного загрязнения. Этим нормативам должна удовлетворять любая водопроводная вода, используемая населением для питьевых и бытовых нужд вне зависимости от вида водоисточника или способа обработки воды.

Гигиенические требования к качеству воды централизованного водоснабжения. Требования к качеству воды централизованного хозяйственно-питьевого водоснабжения определяются СанПиН 2.1.4.1074 - 01 «Питьевая вода. Гигиенические требования и контроль за качеством», согласно которому питьевая вода должна быть:

- безопасной в эпидемическом отношении,

- безвредной по химическому составу,

- иметь благоприятные органолептические свойства,

- безопасной в радиационном отношении.

У потребление недоброкачественной питьевой воды может быть причиной: инфекционных и паразитарных заболеваний, связанных с загрязнением водоисточников хозяйственно-фекальными сточными водами или нечистотами из выгребов; заболеваний неинфекционной природы, связанных с особенностями природного химического состава воды; заболеваний неинфекционной природы, связанных с загрязнением воды химическими веществами, попавшими туда в результате промышленного, сельскохозяйственного, бытового и иного загрязнения, добавляемыми в виде реагентов или образующимися в качестве побочных продуктов в процессе обработки воды на водопроводных станциях.

В Российской Федерации с 2002 г. действуют Санитарно-эпидемиологические правила и нормативы — СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», которые учитывают современное санитарно-эпидемическое состояние окружающей среды и обеспечивают высокие требования к качеству питьевой воды и контролю за ним.

Питьевая вода должна быть безопасна в эпидемическом и радиационном отношении, безвредна по химическому составу и иметь благоприятные органолептические свойства.

Качество питьевой воды должно соответствовать гигиеническим нормативам перед ее поступлением в распределительную сеть, а также в точках водоразбора наружной и внутренней водопроводной сети.

Безопасность питьевой воды в эпидемическом отношении определяется ее соответствием нормативам по микробиологическим и паразитологическим показателям (табл. 3.3).

Безвредность питьевой воды по химическому составу определяется рядом нормативных параметров, к которым относятся:

  1. о бобщенные показатели (см. ниже) и содержание вредных химических веществ, наиболее часто встречающихся в природных водах на территории Российской Федерации, а также веществ антропогенного происхождения, получивших глобальное распространение (табл. 3.4);

2) содержание вредных химических веществ, поступающих и образующихся в воде в процессе ее обработки в системе водоснабжения (табл. 3.5);

3) содержание вредных химических веществ, поступающих в источники водоснабжения в результате хозяйственной деятельности человека (их более 1200).

Нормативы обобщенных показателей безопасности питьевой воды следующие:

Органолептические свойства воды должны соответствовать следующим нормативам:

На органолептические свойства воды оказывает влияние также содержание веществ, приведенных в табл. 3.4 и 3.5. Не допускается присутствие в питьевой воде различимых невооруженным глазом водных организмов и поверхностной пленки.

Радиационная безопасность питьевой воды определяется соответствием нормативам показателей общей а- и р-активности. Общая а-радиоактивность не должна превышать ОД Бк/л, а общая р-радиоактивность — 1,0 Бк/л.

Методы обработки воды, с помощью которых качество воды источников водоснабжения доводится до соответствия требованиям СанПиН 2.1.4.1074-01 «Питьевая вода. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества», зависят от качества исходной воды водоисточников и подразделяются на основные и специальные. Основными способами являются осветление, обесцвечивание, обеззараживание.

Под осветлением и обесцвечиванием понимается устранение из воды взвешенных веществ и окрашенных коллоидов (в основном гумусовых веществ). Путем обеззараживания устраняют содержащиеся в воде водоисточника инфекционные агенты — бактерии, вирусы и др.

В тех случаях, когда применения только основных способов недостаточно, используют специальные методы очистки (обезжелезивание, обесфторивание, обессоливание и др.), а также введение некоторых необходимых для организма человека веществ — фторирование, минерализация обессоленных и маломинерализованных вод.

Для удаления химических веществ наиболее эффективным является метод сорбционной очистки с использованием активированного угля, такая очистка значительно улучшает и органолептические свойства воды.

Методы обеззараживания воды подразделяются на химические (хлорирование, озонирование, использование серебра) и физические (кипячение, ультрафиолетовое облучение, облучение у-лучами и др.).

В настоящее время основным методом, используемым для обеззараживания воды на водопроводных станциях является метод хлорирования. Однако все большее распространение получает метод озонирования, в комбинации с хлорированием он дает хорошие результаты по улучшению качества воды.

Наиболее часто для хлорирования воды на водопроводах используют газообразный хлор, однако применяют и другие хлорсодержащие реагенты. В порядке возрастания окислительно-восстановительного потенциала они располагаются следующим образом: хлорамины (RNHC12и RNH2C1), гипохлориты кальция Са(ОС1)и натрия NaOCl, хлорная известь (комплекс Са(С1О)2, СаС12, Са(ОН)2 и молекул воды), газообразный хлор, диоксид хлора С1О2.

Бактерицидный эффект хлорирования объясняется воздействием на протоплазму бактерий хлорноватистой кислоты, которая образуется при введении хлора в воду:

Бактерицидными свойствами обладают также хлоратионы и хлорид-ионы, которые образуются при разложении хлорноватистой кислоты:

Степень диссоциации НОС1 возрастает при повышении активной реакции воды, таким образом, с повышением рН бактерицидный эффект хлорирования снижается.

Действующим началом при хлорировании хлорамином и гипохлоритами является хлорат-ион, а диоксидом хлора — НС1О (хлористая кислота), которая имеет наиболее высокий окислительно-восстановительный потенциал, в силу чего при использовании диоксида хлора достигается наиболее полное окисление и обеззараживание.

При введении хлорсодержащего реагента в воду основное его количество (более 95 %) расходуется на окисление органических и легкоокисляющихся неорганических (соли двухвалентного железа и марганца) веществ, содержащихся в воде; на окисление бактериальных клеток расходуется всего 2...3 % общего количества хлора.

Количество хлора, которое при хлорировании 1 л воды расходуется на окисление органических, легкоокисляющихся неорганических веществ и обеззараживание бактерий в течение 30 мин, называется хлорпоглощаемостъю воды. Хлорпоглощаемость определяется экспериментально.

По окончании процесса связывания хлора содержащимися в воде веществами и бактериями в воде появляется остаточный активный хлор. Его появление, определяемое титрометрически, является свидетельством завершения процесса хлорирования.

Присутствие в воде, подаваемой в водопроводную сеть, остаточного активного хлора в концентрации 0,3...0,5 мг/л является гарантией эффективности обеззараживания. Кроме того, наличие активного остаточного хлора необходимо для предотвращения вторичного загрязнения воды в разводящей сети. Следовательно, наличие остаточного хлора является косвенным показателем безопасности воды в эпидемическом отношении.

Общее количество хлора, необходимое для удовлетворения хлорпоглощаемости воды и обеспечения наличия необходимого количества (0,3...0,5 мг/л свободного активного хлора при нормальном хлорировании и 0,8...1,2 мг/л связанного активного хлора при хлорировании с аммонизацией) остаточного хлора называется хлорпотребностъю воды.

В практике водоподготовки используется несколько способов хлорирования воды: хлорирование нормальными дозами (по хлорпотребности); хлорирование с преаммонизацией и др.; гиперхлорирование (доза хлора заведомо превышает хлорпотребность).

Процесс обеззараживания обычно является последней ступенью схем обработки воды на водопроводных станциях, однако в ряде случаев при значительном загрязнении исходных вод применяется двойное хлорирование — до и после осветления и обесцвечивания. Для снижения дозы хлора при заключительном хлорировании перспективным является комбинирование хлорирования с озонированием.

При хлорировании нормальными дозами доза хлора устанавливается экспериментально по сумме хлорпоглощаемости и санитарной нормы остаточного хлора (хлорпотребности воды) путем проведения пробного хлорирования. Этот метод наиболее часто применяется на водопроводных станциях. Минимальное время контакта воды с хлором при хлорировании нормальными дозами составляет летом не менее 30 мин, зимой —1ч.

При хлорировании с преаммонизацией в воду помимо хлора вводится аммиак, в результате чего происходит образование хлораминов. Этот метод употребляется для улучшения процесса хлорирования, во-первых, при необходимости транспортировки воды по трубопроводам на большие расстояния, так как остаточный связанный (хлораминный) хлор обеспечивает более длительный бактерицидный эффект, чем свободный; во-вторых, при содержании в исходной воде фенолов, которые при взаимодействии со свободным хлором образуют хлорфенольные соединения, придающие воде резкий аптечный запах. Хлорирование с преаммонизацией приводит к образованию хлораминов, которые из-за более низкого окислительно-восстановительного потенциала в реакцию с фенолами не вступают, поэтому посторонние запахи не возникают. Однако в силу более слабого действия хлораминов остаточное количество его в воде должно быть выше, чем свободного, и составлять не менее 0,8...1,2 мг/л.

Гиперхлорирование воды — хлорирование дозами, заведомо превышающими хлорпотребность воды. Гиперхлорирование используется при неблагоприятной эпидемиологической обстановке, при отсутствии или неэффективной работе водоочистных сооружений, в полевых условиях, при отсутствии возможности проведения пробного хлорирования для определения хлорпотребности.

При проведении хлорирования в качестве источника активного хлора часто используют 1 % раствор хлорной извести. Хлорная известь является нестойким соединением, поэтому необходимо предварительно определить содержание в ней активного хлора.

Для приготовления 1 % раствора хлорной извести берут навеску в 1 г хлорной извести, измельчают ее в фарфоровой ступке пестиком и прибавляют дистиллированную воду до образования кашицы. Затем кашицу разводят дистиллированной водой и переливают содержимое чашки в мерный цилиндр, доводя количество раствора до объема 100 мл. Тщательно перемешивают и оставляют раствор на 10 мин. Используют хлорную известь, содержащую не менее 25 % активного хлора.

21. Сравнительная характеристика источников водоснабжения. Зоны санитарной охраны водоисточников.

Основной целью создания и обеспечения режима в зоне санитарной охраны является санитарная охрана от загрязнения источников водоснабжения и водопроводных сооружений, а также территорий, на которых они расположены.

Зоны санитарной охраны организуются в составе трех поясов:

  1. Первый пояс (строгого режима) включает территорию расположения водозаборов, площадок всех водопроводных сооружений и водопроводящего канала. Его назначение – защита места водозабора и водозаборных сооружений от случайного или умышленного загрязнения и повреждения.

  2. Второй и третий пояса (пояса ограничения) включают территорию, предназначенную для предупреждения загрязнения воды источников водоснабжения. Второй пояс предназначен для защиты от микробного загрязнения, третий пояс – от химического загрязнения.

Факторы, определяющие границы поясов зоны санитарной охраны:

- вид источника водоснабжения (поверхностный или подземный),

- характер загрязнения (микробное или химическое),

- степень естественной защищенности от поверхностного загрязнения

( для подземного источника).

Граница первого пояса для подземного источника: на расстоянии не менее 30-50 м от водозабора; для поверхностного источника (реки, каналы): вверх по течению – не менее 200 м от водозабора, вниз по течению – не менее 100 м от водозабора, по прилегающему берегу – не менее 100 м.

Границы второго и третьего поясов определяются гидродинамическими расчетами.

Одним из главных принципиальных вопросов гигиены питьевой воды является выбор водоисточника. Этот выбор проводится путем техгни­ко-экономического сравнения вариантов источников водоснабжения, кото­рыми могут быть атмосферные, подземные и поверхностные.

Атмосферные воды, весьма слабо минирализованы, очень мягкие, со­держат мало органических веществ и свободны от патогенных бактерий. В дальнейшем на качество воды влияет способ сбора и хранения.

Подземные воды, пригодны для целей питьевого водоснабжения, зале­гают на глубине не более 250 - 300 м. По условиям залегания различают верховодку, грунтовые и межпластовые воды, значительно отличающиеся друг от друга по гигиеническим характеристикам.

Подземные воды, залегающие наиболее близко к земной поверхности, называются верховодкой. Вследствие поверхностного залегания, отсутс­твия водоупорной кровли и малого объема верховодка легко загрязняется, как правило, в санитарном отношении она ненадежна и не может считаться хорошим источником водоснабжения.

Грунтовые воды - воды первого от поверхности земли постоянно су­ществующего водоносного горизонта. Они не имеют защиты из водоупорных слоев; область питания грунтовых вод совпадает с областью их распрост­ранения.

Грунтовые воды характеризуются весьма непостоянным режимом, кото­рый целиком зависит от гидрометеорологических факторов, частоты выпа­дения и обилия осадков. Вследствие этого имеются значительные сезонные колебания уровня стояния, химического и бактериального состава грунто­вых вод. Запас их пополняется за счет инфильтрации атмосферных осадков либо воды рек природы высокого уровня. В процессе инфильтрации вода в значительной мере освобождается от органического и бактериального заг­рязнения; при этом ухудшается и ее органолептические свойства. Исполь­зуются грунтовые воды главным образом в сельской местности при органи­зации колодезного водоснабжения.

Межпластовые подземные воды залегают между водоупорными слоями и в зависимости от условий залегания могут быть напорными или безнапор­ными. Межпластовые воды отличаются от грунтовых невысокой температурой (5-120), постоянством состава. Обычно они прозрачны, бесцветны, лишены запаха и какого-либо привкуса. 

Благодаря длительной фильтрации и наличию водоупорной кровли, за­щищающей межпластовые воды от загрязнения, последние отличаются почти полным отсутствием микроорганизмов, и могут использоваться для питья в сыром виде. Добываются межпластовые воды путем устройства глубоких трубчатых и, реже, шахтных колодцев.

Постоянный и большой дебит (от 1 до 200 м3/ч) и хорошие качества воды позволяют рассматривать межпластовые водоносные горизонты как лучший источник водоснабжения для небольших и средних водопроводов, большинство которых подает воду населению без какой-либо очистки.

Родники. Подземные воды могут самостоятельно выходить на поверх­ность земли. В таком случае они носят название родников, из которых образуются ключи или ручейки.

Поверхностные воды стекают по естественным уклонам к более пони­женным местам, образуя проточные и непроточные водоемы: ручьи, реки, проточные и непроточные озера. Открытые водоемы питаются не только ат­мосферными, но и частично подземными водами.

Открытые водоемы подвержены загрязнению извне, поэтому с эпидеми­ологической точки зрения все открытые водоемы в большей или меньшей степени потенциально опасны. Особенно сильно загрязняется вода в участках водоема, лежащих у населенных пунктов и в местах спуска сточ­ных вод.

При необходимости использовать открытый водоем для водоснабжения

следует, во-первых, отдать предпочтение крупным и проточным незарегу­лированным водоемам, во-вторых, охранять водоем от загрязнения бытовы­ми и промышленными сточными водами и, в-третьих, надежно обеззаражи­вать воду.

В связи с изложенными о гигиенической характеристике водоисточни­ков разного происхождения ГОСТ предусматривает при выборе источников водоснабжения в первую очередь ориентироваться на напорные, межпласто­вые-артезианские воды. При невозможности их использования изыскивают другие в следующем порядке: а) межпластовые напорные воды, в том числе родниковые; б) грунтовые воды; в) открытые водоемы.