Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
dorozhkin kravchenko drozdova.docx
Скачиваний:
1
Добавлен:
01.07.2025
Размер:
177.15 Кб
Скачать
  1. Смерть Пифагора

О смерти самого Пифагора ходило много самых разных легенд. Но учение Пифагора и его учеников продолжало жить.

Относительно того, как умер Пифагор, общего мнения нет. Некоторые говорят, что он был убит собственными учениками; другие говорят, что он бежал из Кротона с небольшой группой последователей и, попав в засаду, сгорел в подожженном доме. По сообщениям Дикеарха следовало, что Пифагор умер в Метапонте: “Пифагор умер, бежав в метапонтийский храм муз, где провел сорок дней без пищи”.

Согласно легендам Пифагор был сыном бога Гермеса. Другая легенда гласит, что однажды река Кас, увидев его, приветствовала философа человеческим голосом. Пифагор соединял в себе черты мудреца, мистика, математика и пророка, тщательного исследователя числовых закономерностей мира и религиозного реформатора. При этом его приверженцы почитали его чудотворцем.

Еще одна версия говорит о том, что в горящем доме ученики образовали мост из тел, живыми войдя в огонь, для того, чтобы их учитель прошел по нему и спасся, и только впоследствии Пифагор умер от разрыва сердца, скорбя по поводу кажущейся тщетности своих усилий по просвещению и служению человечеству. Выжившие его ученика пытались продолжать его учение, но они всякий раз подвергались гонениям, и к сегодняшнему дню мало что осталось от свидетельств величия этого философа.

Легенда о смерти Пифагора

Сонную тишину ночного Метапонта прорезал ужасный крик. Послышалось падение на землю тяжелого тела, топот убегающих ног, и все смолкло. Когда ночной караул прибыл на место происшествия, в колеблющемся свете факелов все увидели распростертого на земле старца, и неподалеку от него - мальчик 12 с лицом, перекошенным от ужаса.

- Кто это? - спросил начальник караула у мальчика

- Это Пифагор, - ответил тот.

- Кто такой Пифагор? Среди жителей города нет гражданина с таким именем.

- Мы недавно прибыли из Кротона. Мой господин должен был скрываться от врагов, и выходил только ночью. Они выследили его и убили.

- Сколько их было?

- Я этого не успел заметить в темноте. Они отбросили меня в сторону и накинулись на него. Начальник караула стал на колени и приложил руки к груди старца.

- Конец, - сказал начальник.

  1. Теорема Пифагора

а) В настоящее время известно, что эта теорема не была открыта Пифагором. Однако одни полагают, что именно Пифагор первым дал ее полноценное доказательство, а другие отказывают ему и в этой заслуге. Некоторые приписывают Пифагору доказательство, которое Евклид приводит в первой книге своих "Начал". С другой стороны, Прокл утверждает, что доказательство в "Началах" принадлежит самому Евклиду. Как мы видим, история математики почти не сохранила достоверных конкретных данных о жизни Пифагора и его математической деятельности. Зато легенда сообщает даже ближайшие обстоятельства, сопровождавшие открытие теоремы. Многим известен сонет немецкого писателя-романиста Шамиссо:

Пребудет вечной истина, как скоро

Ее познает слабый человек!

И ныне теорема Пифагора

Верна, как и в его далекий век.

Обильно было жертвоприношенье

Богам от Пифагора. Сто быков

Он отдал на закланье и сожженье

За света луч, пришедший с облаков.

Поэтому всегда с тех самых пор,

Чуть истина рождается на свет,

Быки ревут, ее почуя, вслед.

Они не в силах свету помешать, А могут лишь, закрыв глаза, дрожать

От страха, что вселил в них Пифагор.

Исторический обзор теоремы Пифагора начнем с древнего Китая. Здесь особое внимание привлекает математическая книга Чу-пей. В этом сочинении так говорится о пифагоровом треугольнике со сторонами 3, 4 и 5:

"Если прямой угол разложить на составные части, то линия, соединяющая концы его сторон, будет 5, когда основание есть 3, а высота 4".

В этой же книге предложен рисунок, который совпадает с одним из чертежей индусской геометрии Басхары. Кантор (крупнейший немецкий историк математики) считает, что равенство 3 ² + 4 ² = 5² было известно уже египтянам еще около 2300 г. до н. э., во времена царя Аменемхета I .

Несколько больше было известно о теореме Пифагора вавилонянам. В одном тексте, относимом ко времени Хаммураби, т.е. к 2000 году до нашей эры, приводится приближенное вычисление гипотенузы прямоугольного треугольника; отсюда можно сделать вывод, что в Двуречье умели производить вычисления с прямоугольными треугольниками, по крайней мере, в некоторых случаях.

Геометрия у индусов была тесно связана с культом. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около 8 века до нашей эры. Наряду с чисто ритуальными предписаниями, существуют и сочинения геометрически теологического характера, называемые Сульвасутры. В этих сочинениях, относящихся к 4 или 5 веку до нашей эры, мы встречаемся с построением прямого угла при помощи треугольника со сторонами 15, 36, 39.

В средние века теорема Пифагора определяла границу, если не наибольших возможных, то, по крайней мере, хороших математических знаний. Характерный чертеж теоремы Пифагора, который ныне иногда превращается школьниками, например, в облаченного в мантию профессора или человека в цилиндре, в те времена нередко употреблялся как символ математики.

Некоторые переводы знаменитой теоремы:

У Евклида эта теорема гласит (дословный перевод):

"В прямоугольном треугольнике квадрат стороны, натянутой над прямым углом, равен

квадратам на сторонах, заключающих прямой угол".

Латинский перевод арабского текста Аннариции:

«Во всяком прямоугольном треугольнике квадрат, образованный на стороне, натянутой над прямым углом, равен сумме двух квадратов, образованных на двух сторонах, заключающих прямой угол»

В Geometry Culmonensis (около 1400года) теорема читается так (в переводе):

“Итак, площадь квадрата, измеренного по длиной стороне, столь же велика, как у двух квадратов, которые измерены по двум сторонам его, примыкающим к прямому углу”

В русском переводе евклидовых «Начал», теорема Пифагора изложена так:

«В прямоугольном треугольнике квадрат из стороны, противолежащей

прямому углу, равен сумме квадратов из сторон, содержащих прямой угол». Как видим, в разных странах и разных языках существуют различные

варианты формулировки знакомой нам теоремы. Созданные в разное время и в 9 разных языках, они отражают суть одной математической закономерности, доказательство которой также имеет несколько вариант

б) В настоящее время известно более трехсот доказательств теоремы Пифагора. В нашей проектной работе мы решили перечислить и разобрать некоторые наиболее интересные доказательства.

Д ревнекитайское доказательство.

Иначе называется «Стул невесты» из-за похожей на стул фигуры, которая получается в результате всех построений. Если мысленно отрезать от первого чертежа два зеленых п рямоугольных треугольника, перенести их к противоположным сторонам квадрата со стороной с и гипотенузами приложить к гипотенузам сиреневых треугольников, получится фигура под названием «стул невесты» (рис.2). Для наглядности можно то же самое проделать с бумажными квадратами и треугольниками. Вы убедитесь, что «стул невесты» образуют два квадрата: маленькие со стороной b и большой со стороной a.

Эти построения позволили древнекитайским математикам и нам вслед за ними прийти к выводу, что c2=a2+b2.

Д оказательство Евклида

В самом деле, затушеванные на рисунке треугольники ABD и BFC равны по двум сторонам и углу между ними: FB=AB, BC==BD и FBC=d+ABC=ABD. Но SABD=1/2 SBJLD, так как у треугольника ABD и прямоугольника BJLD общее основание BD и общая высота LD. Аналогично SFBC=1\2 SABFH (BF—общее основание, АВ—общая высота). Отсюда, учитывая, что SABD=SFBC , имеем SBJLD= SABFH. Аналогично, используя равенство треугольников ВСК. и АСЕ, доказывается, что SJCEL=SACKG.

Итак, SABFH+SACKG=SBJLD+SJCEL= SBCED , что и требовалось доказать. Доказательство Евклида в сравнении с древнекитайским или древнеиндийским выглядит чрезмерно сложным. По этой причине его нередко называли «ходульным» и «надуманным». Но такое мнение поверхностно. Теорема Пифагора у Евклида является заключительным звеном в цепи предложений 1-й книги «Начал». Для того чтобы логически безупречно построить эту цепь, чтобы каждый шаг доказательства был основан на ранее доказанных предложениях, Евклиду нужен был именно выбранный им путь.

Древнеиндийское доказательство

Д оказательство описано в XII веке в трактате «Венец знания» («Сиддханта широмани») и в качестве главного аргумента автор использует призыв, обращенный к математическим талантам и наблюдательности учеников и последователей: «Смотри!».

Внутри квадрата постройте четыре прямоугольных треугольника так, как это обозначено на чертеже. Сторону большого квадрата, она же гипотенуза, обозначим с. Катеты треугольника назовем а и b. В соответствии с чертежом сторона внутреннего квадрата это (a-b).

Используйте формулу площади квадрата S=c2, чтобы вычислить площадь внешнего квадрата.

И одновременно высчитайте ту же величину, сложив площадь внутреннего квадрата и площади всех четырех прямоугольных треугольников: (a-b)22+4*1\2*a*b.

Вы можете использовать оба варианта вычисления площади квадрата, чтобы убедиться: они дадут одинаковый результат. И это дает вам право записать, что c2=(a-b)2+4*1\2*a*b. В результате решения вы получите формулу теоремы Пифагора c2=a2+b2. Теорема доказана.

Доказательство Дж. Гарфилда (1882)

Это еще один способ найти решение для теоремы Пифагора, опираясь на геометрию. Называется он «Метод Гарфилда».

П остройте прямоугольный треугольник АВС. Нам надо доказать, что ВС2=АС2+АВ2.

Для этого продолжите катет АС и постройте отрезок CD, который равен катету АВ. Опустите перпендикулярный AD отрезок ED. Отрезки ED и АС равны. Соедините точки Е и В, а также Е и С и получите чертеж, как на рисунке ниже

Чтобы доказать терему, мы вновь прибегаем к уже опробованному нами способу: найдем площадь получившейся фигуры двумя способами и приравняем выражения друг к другу.

Найти площадь многоугольника ABED можно, сложив площади трех треугольников, которые ее образуют. Причем один из них, ЕСВ, является не только прямоугольным, но и равносторонним. Не забываем также, что АВ=CD, АС=ED и ВС=СЕ – это позволит нам упростить запись и не перегружать ее. Итак, SABED=2*1/2(AB*AC)+1/2ВС2.

При этом очевидно, что ABED – это трапеция. Поэтому вычисляем ее площадь по формуле: SABED=(DE+AB)*1/2AD. Для наших вычислений удобней и наглядней представить отрезок AD как сумму отрезков АС и CD.

Запишем оба способа вычислить площадь фигуры, поставив между ними знак равенства: AB*AC+1/2BC2=(DE+AB)*1/2(AC+CD). Используем уже известное нам и описанное выше равенство отрезков, чтобы упростить правую часть записи: AB*AC+1/2BC2=1/2(АВ+АС)2. А теперь раскроем скобки и преобразуем равенство: AB*AC+1/2BC2=1/2АС2+2*1/2(АВ*АС)+1/2АВ2. Закончив все преобразования, получим именно то, что нам и надо: ВС2=АС2+АВ2. Мы доказали теорему.

Конечно, этот список доказательств далеко не полный. Теорему Пифагора также можно доказать с помощью векторов, комплексных чисел, дифференциальный уравнений, стереометрии и т.п. И даже физики: если, например, в аналогичные представленным на чертежах квадратные и треугольные объемы залить жидкость, то, переливая ее, можно доказать равенство площадей и саму теорему в итоге.

в) Задачи на теорему Пифагора

В своей проектной работе мы решили разобрать несколько интересных задач на теорему Пифагора.

Задача №1

Задача древних индусов, тоже написанная в форме стихотворения:

Над озером тихим,

С полфута размером, высился лотоса цвет.

Он рос одиноко. И ветер порывом

Отнес его в сторону. Нет

Боле цветка над водой.

Нашел же рыбак его ранней весной

В двух футах от места, где рос.

Итак, предложу я вопрос:

Как озера вода

Здесь глубока?”

Решение задачи:

CD – глубина озера, обозначим ее х

Тогда по теореме Пифагора имеем:

Ответ:

Задача №2

Часто математики записывали свои задачи в стихотворной форме. Вот одна из задач индийского математика ХII в. Бхаскары:

На берегу реки рос тополь одинокий.

Вдруг ветра порыв его ствол надломал.

Бедный тополь упал. И угол прямой

С теченьем реки его ствол составлял.

Запомни теперь, что в том месте река

В четыре лишь фута была широка.

Верхушка склонилась у края реки.

Осталось три фута всего от ствола,

Прошу тебя, скоро теперь мне скажи

У тополя как велика высота?”

Дано:

Найти: АВ.

Решение.

1) Дано:

АВС

Угол А=90

АС = 3 фута

АD = 4 фута

Найти: АВ.

Решение.

1) АВ= АС+АD

2) По теореме Пифагора

3) АВ= 3+5= 8 футов

Ответ: 8 футов

Задача №3

Она взята из первого учебника математики на Руси. Называется этот учебник “Арифметика”.

- Кто из вас, ребята, знает автора первого учебника?

(Ответ: Леонтий Филиппович Магницкий.)

- Однако настоящая его фамилия Телянин, а Магницким он стал по приказу Петра I, который был восхищен его занятиями, притягивавшими к себе всех любознательных подобно магниту.

“Случится некоему человеку к стене лествицу прибрати, стены же тоя высота есть 117 стоп. И обреете лествицу долготою 125 стоп. И ведати хощет, колико стоп сея лествицы нижний конец от стены отстояти имать”.

Дано:

Найти: СВ.

Решение:

  1. Пусть СВ= х стоп. Тогда, используя теорему Пифагора (треугольник – прямоугольный), имеем равенство:

Тогда

Ответ: 44 стопы.

г) Интересные факты о теореме Пифагора

Пифагоровы штаны – на все стороны равны.

Чтобы это доказать, нужно снять и показать.

Этот стишок известен всем со средней школы, с тех самых пор, когда на уроке геометрии мы изучали знаменитую теорему Пифагора: квадрат длины гипотенузы прямоугольного треугольника равен сумме квадратов катетов. А вот вам 10 фактов о знаменитой теореме.

1. Происхождение штанов понятно: построенные на сторонах треугольника и расходящиеся в разные стороны квадраты напоминали школьникам покрой мужских штанов. Правда, это как посмотреть: средневековые школяры называли эту теорему «pons asinorum», что означает «ослиный мост».

2. Книга рекордов Гиннесса называет теорему Пифагора теоремой с максимальным числом доказательств. И поясняет в 1940 году была опубликована книга, которая содержала триста семьдесят доказательств теоремы Пифагора, включая одно предложенное президентом США Джеймсом Абрамом Гарфилдом.

3. Теорему Пифагора доказывали через подобные треугольники, методом площадей и даже через дифференциальные уравнения – это сделал английский математик начала двадцатого века Годфри Харди. Известны доказательства теоремы Пифагора, предложенные Евклидом и Леонардо Да Винчи. А Электроник – мальчик из чемоданчика в книге Евгения Велтистова знал целых двенадцать способов, а среди них «метод укладки паркета» и «стул невесты».

4. Только одно доказательство теоремы Пифагора нам не известно: доказательство самого Пифагора. Долгое время считалось, что доказательство Евклида и есть доказательство Пифагора, но теперь считают, что это доказательство принадлежит Евклиду.

5. К настоящему моменту историки математики обнаружили, что теорема Пифагора не была открыта Пифагором – ее знали в разных странах задолго до древнегреческого философа и математика родом с острова Самос, жившего в VI веке до н.э.

6. Крупнейший историк математики Мориц Кантор разглядел папирус из Берлинского музея и обнаружил, что равенство три в квадрате плюс четыре в квадрате равно пяти в квадрате было известно уже египтянам около 2300 года до нашей эры во времена царя Аменемхета I.

7. Приближенное вычисление гипотенузы прямоугольного треугольника обнаруживается в вавилонских текстах времен правления царя Хаммурапи, то есть за два тысячелетия до нашей эры. Весьма вероятно, что теорема о квадрате гипотенузы была известна в Индии уже около VIII века до нашей эры.

8. Голландский математик Бартель Ван дер Варден сделал важный вывод: «Заслугой первых греческих математиков, таких как Пифагор, является не открытие математики, но ее систематизация и обоснование. В их руках вычислительные рецепты, основанные на смутных представлениях, превратились в точную науку».

9. «В день, когда Пифагор открыл свой чертёж знаменитый,

Славную он за него жертву быками воздвиг».

Со слов неизвестного древнего стихотворца легенда о гекатомбе – жертвоприношении ста быков пошла гулять по умам и страницам изданий. Остряки шутят, что с тех самых пор все скоты боятся нового.

10. Сам Пифагор никогда не носил штанов – в те времена греки их не знали.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]