- •Введение. Термодинамические процессы
- •Термодинамика биологических процессов
- •Параметры (2 основн-х типа):
- •8.Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •9.Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Практич. Применение:
- •Следствия из закона Гесса:
- •Осн. Положения:
- •Применимость 2 закона т/д для характеристики свойств биосистем
- •Применимость второго закона тд к биосистемам:
- •15.Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона термодинамики для открытых систем.
- •Механизмы саморегуляции систем
- •18. Организм и клетка как химическая машина. Химический потенциал живой системы.
- •19.Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •20.Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Расчёт тд параметров для тд систем:
- •21. Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •21.Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •23.Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •24.Типы энергетического обмена в биосистемах
- •26. Термодинамическая характеристика анаэробного распада глюкозы. Расчет кпд.
- •Баланс атф при анаэробном гликолизе
- •Анаэробная фаза дыхания (гликолиз)
- •27. Термодинамическая характеристика окисления пвк в цикле Кребса. Ресчет кпд.
- •Значение окислительного декарбоксилирования пирувата
- •Регуляция общего пути катаболизма
- •28. Термодинамика полного окисления глюкозы. Расчет биологического окисления глюкозы.
- •Реакции подготовительного этапа:
- •Общее уравнение декарбоксилирования и окисления пвк:
- •29. Этапы унификации энергетических субстратов в процессах катаболизма.
- •Суть гипотезы Митчела можно выразить следующей схемой
- •33. Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •В упрощенном виде ресинтез атф аэробным путем может быть представлен схемой:
- •Гликолитический путь ресинтеза атф
- •Итоговое уравнение анаэробного расщепления гликогена имеет следующий вид:
- •34. Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Электронтранспортные цепи митохондрий эукариот
- •Электронтранспортные цепи бактерий
- •35. Биофизика фотосинтеза
- •Квантовый расход фотосинтеза для одноклеточных водорослей в лабораторных условиях составляет 8-12 квантов на молекулу co2.
21.Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
Макроэргические связи – связь при разрыве которой выделяется порядка 8-9 ккал. При их гидролизе выделяется от 20тыс Дж .
Самые макроэргические соединения : 1) ацетиладенилат – 62,5 кДж; 2) фосфоенолпируват – 61 кДж; 3) 1,3-дифосфоглицерат 54,5 кДж; 4) карбомоилфосфат 51,5 кДж; 5) ацетилфосфат 47,5 кДж; 6) ацетилкоэнзим А – 35-48кДж; 7) S-аденозинметионин 44 кДж; 8) креатинфосфат 42,5 кДж; 9) АТФ 35 кДж; 10) пирофосфат 32,5 кДж.
Макроэргические соединения – характ-ся наличием фосфатных групп. Энергия, освобождающаяся при отщеплении фосфатных групп, может исп-ся для синтеза биоважных веществ с повышенным запасом свободной энергии и для процессов жизнедеятельности, связанных с превращением свободной хим. Е в работу (механич., активного переноса в-в, электрическую и т.д.).
Важнейшим из этих соединений является аденозинтрифосфорная кислота — АТФ.
Нуклеотидный кофермент аденозинтрифосфат [АТФ (АТР)] является наиболее важной формой сохр. хим. Е в клетках. Расщепление АТФ — высоко экзоэргическая реакция. Хим. Е гидролиза АТФ (ΔG) может исп-ся для сопряжения с эндоэргическими процессами, такими, как биосинтез, движение и транспорт. Другие нуклеозидтрифосфатные коферменты (ГТФ, ЦТФ и УТФ), хим. похожие на АТФ, выполняют в метаболических процессах иные функции.
В АТФ цепочка из трех фосфатных остатков связана с 5'-OH-группой аденозина. Фосфатные группы обозначаются как α, β и γ. Рибоза связана с α-фосфатом фосфоэфирной связью. Три фосфатных остатка соединены между собой менее устойчивыми фосфоангидридными связями. При физиологических значениях рН АТФ несет четыре отрицательных заряда. Собственно действующим коферментом является комплекс АТФ с ионом Mg2+, координационно связанным с α- и β-фосфатом (Mg2+ ּ АТФ4-).
Гидролиз АТФ: АТФ + H2O = АДФ + фосфат и сопровождается ↓ свободной Е (в клетке): dF=50 кдж/моль (12 000 кал/моль). Значения выше, чем у большинства р-ций гидролиза. При ферментативном гидролизе АТФ в клетке отщепляющаяся фосфатная группа всегда переносится на субстрат, запас Е в котором оказывается в результате больше, чем в исходном соединении.
Изменение свободной энергии ΔGo' гидролиза фосфоангидридных связей в АТФ при рН 7 в станд. усл. составляет от -30 до -35 кДж/моль. Независимо от того, какая из ангидридных связей АТФ при этом расщепляется, величина ΔGo' остается практически постоянной.
В клетке действительное изменение свободной энергии при гидролизе АТФ ΔG' еще гораздо выше, так как концентрации АТФ, АДФи неорг. фосфата (Рi) существенно более низки, чем в стандартных условиях, а АТФ присутствует в избытке по сравнению с АДФ. На величину ΔG' влияют также величина рН и концентрация ионов Mg2+. Предположительно в физиологических условиях Е гидролиза АТФ до АДФ и неорг. фосфата равна примерно -50 кДж/моль.
Немногие соединения содержат связи с энергией гидролиза, достаточной, чтобы за счет энергетического сопряжения обеспечить синтез АТФ из АДФ и Рi (субстратное фосфорилирование).
Например, синтез сахарозы из глюкозы и фруктозы происходит за счёт энергии, освобождающейся при реакции гидролиза АТФ, путём образования промежуточного активированного соединения — глюкозо-1-фосфата: 1) АТФ + глюкоза=АДФ + глюкозо-1-фосфат; 2) глюкозо-1-фосфат + фруктоза= сахароза + фосфат. Суммарная реакция: АТФ + глюкоза + фруктоза=АДФ + сахароза + фосфат. Энергетический баланс процесса: АТФ=АДФ + фосфат — 29,3 кдж/моль (—7000 кал/моль) (уменьшение свободной энергии); глюкоза + фруктоза=сахароза + 23 кдж/моль (+5500 кал/моль) (увеличение свободной энергии). Потеря энергии на тепло 6,3 кдж/моль (1500 кал/моль), т. е. КПД процесса 79%.
При синтезе белков и нуклеиновых кислот от АТФ отщепляется не одна концевая фосфатная группа, а две последние (пирофосфат). Т. о., все процессы накопления (аккумулирования) энергии в организмах должны сводиться к процессам образования АТФ, т. е. фосфорилирования (включения фосфатных групп в АДФ или АМФ).
Фосфоенолпируват и 1,3-дифосфоглицерат. Оба соединения являются промежуточными продуктами гликолиза. Сукцинил-КоА, гидролиз которого до сукцината сопряжен в цитратном цикле с синтезом ГТФ. Креатинфосфат, с помощью которого в мышце при необходимости может регенерироваться АТФ.
