- •Введение. Термодинамические процессы
- •Термодинамика биологических процессов
- •Параметры (2 основн-х типа):
- •8.Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •9.Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Практич. Применение:
- •Следствия из закона Гесса:
- •Осн. Положения:
- •Применимость 2 закона т/д для характеристики свойств биосистем
- •Применимость второго закона тд к биосистемам:
- •15.Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона термодинамики для открытых систем.
- •Механизмы саморегуляции систем
- •18. Организм и клетка как химическая машина. Химический потенциал живой системы.
- •19.Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •20.Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Расчёт тд параметров для тд систем:
- •21. Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •21.Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •23.Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •24.Типы энергетического обмена в биосистемах
- •26. Термодинамическая характеристика анаэробного распада глюкозы. Расчет кпд.
- •Баланс атф при анаэробном гликолизе
- •Анаэробная фаза дыхания (гликолиз)
- •27. Термодинамическая характеристика окисления пвк в цикле Кребса. Ресчет кпд.
- •Значение окислительного декарбоксилирования пирувата
- •Регуляция общего пути катаболизма
- •28. Термодинамика полного окисления глюкозы. Расчет биологического окисления глюкозы.
- •Реакции подготовительного этапа:
- •Общее уравнение декарбоксилирования и окисления пвк:
- •29. Этапы унификации энергетических субстратов в процессах катаболизма.
- •Суть гипотезы Митчела можно выразить следующей схемой
- •33. Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •В упрощенном виде ресинтез атф аэробным путем может быть представлен схемой:
- •Гликолитический путь ресинтеза атф
- •Итоговое уравнение анаэробного расщепления гликогена имеет следующий вид:
- •34. Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Электронтранспортные цепи митохондрий эукариот
- •Электронтранспортные цепи бактерий
- •35. Биофизика фотосинтеза
- •Квантовый расход фотосинтеза для одноклеточных водорослей в лабораторных условиях составляет 8-12 квантов на молекулу co2.
20.Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
Энергия – мера определённой формы движения материи. Является произведением фактора экстенсивности на интенсивность.
Расчёт тд параметров для тд систем:
ТД параметра в биолог. сист. всего 3: Z, H, S.
только для обратимых процессов в состоянии равновесия:
dZ =∆G =dH – TdS, ∆H=-dQ.
dlnK/dT = - (∆Q/RT2).
Н – энтальпия, Z (G) - ТД потенциал – свободная Е при постоянном давлении и t. dG0 – свободная Е = Е Гиббса, если все исходные в-ва и продукты р-ции определяются при 250С, это табличное значение.
∆Z=∆Z0+RTlnK, где К – это константа скорости биохим. р-ции; ∆Z0 – стандартный ТД потенциал (справочная величина); R – универсальная газовая постоянная.
Свободная Е Гельмгольца (F) – часть Е, кот. полностью переходит в работу. Энергия: 1) высшая (механич, хим, электрич.); 2) тепловая или деградированная.
TdS = dU + dA
-dA = d (U - TdS)
F=UTS – это свободная энергия Гельмгольца.
dF = dU – TdS – это запись 2 закона ТД ч/з свободную Е Гельмгольца.
Если V, T = const, то pdV=0, то Wmax=TdS-dU=-d(U-TS)=-dF; F=U-TS – термодинамический потенциал Гельм-Гольци или свободная энергия Гельм-Гольца.
Если P, T = const, то Wmax=-d(U+pdV-TS)=-dG; G – т/д потенциал Гиббса или свободная энергия Гиббса
В реальных условиях редко Р постоянно, а V системы изменяется, следовательно величины т/д потенциалов совпадают.
Выполнение полезной работы при выполнении необратимого процесса всегда сопровождается рассеянием энергии, величину которой определяет произведением TdS, чем больше эта величина, тем более необратимым является процесс.
По знаку и величине ТД потенциала можно судить о направленности процесса, если в результате процесса величина ТД потенциалов уменьшается, такой процесс является самопроизвольным, идет с выделением энергии и называется экзергоническим, если т/д потенциалы увеличивается, то процесс идет не самопроизвольный, требует притока энергии извне и называется эндергоническим.
При достижении равновесия ТД потенциалы стремятся к минимальному значению.
Процессы превращений энергии и совершения работы могут протекать до тех пор пока свободная энергия не станет равна нулю, а энтропия максимальной. Такое состояние носит названия ТД равновесия.
Такое состояние в неживой природе является конечным состоянием, в направлении которого эволюционируют все ТД системы.
21. Потенциал переноса атомных группировок в различных трансферазных реакциях.
ТРАНСФЕРАЗЫ, класс ферментов, катализирующих перенос фрагментов м-л (напр., метила, ацетила, гликозила) с одного соед. (донора) на др. соед. (акцептор). Во мн. случаях промежут. донором является кофермент, присоединяющий группу, подлежащую переносу.
Подклассы Т. (их 8) различают по характеру групп, переносимых на акцептор. К подклассу Т., кат-щих перенос одноуглеродных фрагментов, относятся метил-трансферазы, Т. гидроксиметильных, формальных и др. родственных групп, карбоксил- и карбамоилтрансферазы и др. Перенос группы СН3 осущ-ся, напр., с 5-метил-тетрагидрофолиевой к-ты на гомоцистеин HSCH2CH2CH(NH2)COOH на последней стадии биосинтеза метионина.
Универсальный донор групп СН3 при трансметилировании - S-аденозилметионин - субстрат метил-трансфераз, модифицирующих нуклеиновые к-ты; эти ферменты играют важную роль в функционировании генетич. аппарата клетки.
Известны также Т., кат-щие метилирование жирных к-т, ненасыщ. фосфолипидов, полисахаридов и др. Многие Т., кат-щие перенос гидроксиметильных и формильных остатков (напр., серин-гидрокси-метилтрансфераза), содержат в качестве кофермента пирид-оксальфосфат. Универсальные доноры в этих р-циях-5,10-метилен- или 5-формилтетрагидрофолиевая к-та. Донор карбамоильного остатка для многих Т.-карбамоилфосфат (HO)2P(O)OC(O)NH2 (метаболит в биосинтезе уридиновой к-ты и аргинина). Наиб. Исследованный фермент этого подкласса - аспартат-карбамоилтрансфераза, катализирующая биосинтез К-карбамоил-L-аспарагиновой к-ты (осн. метаболита в синтезе пиримидиновых оснований).
В отдельный подкласс объединяют Т., кат-щие перенос альдегидных и кетонных групп (фрагментов молекул углеводов). В него входит, напр., транскетолаза, переносящая фрагмент НОСН2С(О) в пентозофосфатном цикле.
Подкласс Т. составляют ацилтрансферазы, кат-ющие перенос ацильной группы с образованием эфиров и амидов. Донором в этих р-циях обычно является ацилкофермент А (Пантотеновая кислота). Р-ции, кат-емые этими Т., наиб. характерны для метаболизма жирных к-т. Акцепторами ацетила (донор ацетилкофермент А) м. б. аминокислоты, глюкозамин, остаток фосфорной к-ты и др.
Нек-рые Т. этого подкласса при трансляции в качестве донора используют аминоацил-транспортную РНК. Пример Т. этого подкласса-фосфатацетилтрансфераза, кат-ющая перенос ацетила на фосфорную к-ту с образованием ацетилфосфорной к-ты.
К отдельному подклассу относят Т., кат-ющие перенос гликозильных остатков (гликозилтрансферазы). Нек-рые из этих Т. обладают также гидролитич. активностью, к-рая может рассматриваться как перенос гликозильного остатка на молекулу воды. Акцептором может служить также Н3РО4 в случае фосфорилаз. Наиб. распространен перенос остатка углевода от олигосахаридами богатого энергией метаболита на др. молекулу углевода. К наиб. изученным Т. этого подкласса можно отнести ферменты синтеза гликогена [напр., гликоген (крахмал)синтетазу и галоктозилтрансферазу].
В отдельный подкласс объединяют Т., катализирующие перенос алкильных групп (отличающихся от СН3), как замещенных, так и не замещенных. Хорошо изученные Т. этого подкласса-глутатионтрансферазы, катализирующие перенос разл. остатков на глутатион, а также метионин-аденозил- и енолпируват-трансфераза.
Отдельно рассматривают подкласс Т., катализирующих перенос групп, содержащих атом N. Т. этого подкласса ответственны за перенос аминогрупп. Аминотрансферазы катализируют перенос аминогруппы с аминокислот на 2-оксокислоты. Эта р-ция является, по существу, окислит.-восстановительной. Однако из-за того, что осн. ф-цией этих ферментов считается перенос групп NH2, они классифицируются как Т., а не как оксидоредуктазы. Наиб. изученный фермент этого подкласса-аспартатаминотрансфераза, содержащая в качестве кофермента пиридоксальфосфат.
Важный подкласс Т.- ферменты, катализирующие перенос групп, содержащих атом P (этот подкласс наз. киназами). Большинство ферментов этого подкласса относятся к фос-фотрансферазам, катализирующим перенос остатка фосфорной к-ты на разл. акцепторы. Так, гексокиназа катализирует перенос остатка фосфорной к-ты с АТФ на группу ОН D-гексозы, 3-фосфоглицераткиназа-с АТФ на карбоксильную группу 3-фосфо-D-глицериновой к-ты. Т. этого подкласса катализируют также перенос нуклеотидных фрагментов (нуклеотидилтрансферазы); напр., РНК-полимеразы осуществляют перенос остатковрибонуклеотидов при синтезе РНК. Среди Т. этого подкласса известны также ферменты, катализирующие перенос остатка Н3РО4 с регенерацией донора (р-ции кажущегося внутримол. переноса); напр., фосфоглюкомутаза переносит остаток этой к-ты с a-D-глюкозо-1,6-дифосфата на a-D-глюкозу-1-фосфат с образованием a-D-глюкозо-6-фосфата и молекулы исходного донора.
В подкласс Т. объединены также ферменты, катализирующие перенос фрагментов, содержащих атом S (напр.,арилсульфотрансфераза катализирует перенос сульфогруппы на производные фенола).
