Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_2_Vvedenie_termodinamicheskie_protsessy.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
404.45 Кб
Скачать

Осн. Положения:

1. Невозможно перевести тепло от более холодной системы в более горячую при отсутствии одноимённых изменений в обоих системах и окружающей среде, т.е нельзя закипятить стакан с водой в холодильнике.

2. Самопроизвольно могут протекать лишь те процессы, которые связаны с переносом Е от более высокого уровня к более низкому, т.е. по градиенту.

3. Невозможно совершить работу против градиента.

Градиент - разность величин того или иного параметра в 2-х точках, отнесенных к расстоянию между ними. Математически выражается как вектор. В живом организме - множество градиентов (осмотический градиент, концентрационный, электрический). В мёртвой клетке таких градиентов нет.

2 закон ТД позволяет предсказать направление проц. при заданных условиях. В отличие от 1 закона ТД он не носит всеобщего характера, и применим лишь к системам, состоящим из больш. числа частиц.

Открытию 2 закона ТД предшествовало изобретение тепловых машин – устройств, которые могут превращать теплоту в работу. Естественность хаотического движения молекул приводит к тому, что теплоту нельзя полностью превратить в работу. А работу можно полностью превратить в теплоту – это принципиальное отличие теплоты от работы.

Сущ. несколько формулировок 2 закона ТД:

1. Формулировка по Клаузиусу. Теплота не может самопроизвольно переходить от более холодного тела к более горячему.

2. Формулировка по Оствальду. Вечный двигатель второго рода невозможен (т.е. не существует машины, которая бы полностью превращала теплоту в работу).

3. Формулировка по Томсону. Невозможно получать работу при наличии только одного источника тепла в циклически действующей машине.

Итак, второй закон термодинамики гласит: в изолир. сис-ме самопроизвольно протек. только такие проц., которые ведут к увелич. неупорядоченности си-мы, т.е. к росту энтропии. Основной смысл этого закона состоит в том, что в любой изолир. си-ме с теч. времени происходит постоянное возрастание степени беспорядка, а, значит, и рост энтропии.

Или: существует функция состояния S – энтропия, которая следующим образом связана с теплотой, поступающей в систему, и температурой системы:

1. – для самопроизвольных процессов;

2. – для обратимых (равновесных) процессов;

3. – для несамопроизвольных процессов,

т. е. второй закон термодинамики для различных процессов можно записать с помощью трёх вышеуказанных уравнений.

Применимость 2 закона т/д для характеристики свойств биосистем

1. 2 закон т/д был сформулирован для характеристики изолированных систем. Реальные биологические системы являются открытыми.

2. Значение энтропии строго определено для равновесного состояния. Биосистемы в своем развитии проходят через целый ряд неравновесных состояний.

12.Энтропия как функция состояния системы. Связь энтропии с ТД вероятностью состояния системы.

Естественность хаотического движения м-л приводит к тому, что теплоту нельзя полностью превратить в работу. А работу можно полностью превратить в теплоту – это принципиальное отличие теплоты от работы. A=Q*(T1-T2)/T1. – Это принцип Карно (т.е. ограничивает переход тепла в работу).

Энтропия показывает в каком направлении происходит перемещение Е в изолированных системах.

Энтропия – мера необратимого рассеивания Е, мера неупорядоченности.

Q1/Q2 = T1/T2. S1=Q1/T1. S2=Q2/T2.

S1 – S2 >0 – необратимый процесс

S1 – S2 =0 – обратимый пр-с, сост. равновесия.

В закрытых системах (что это см. вопрос 5) S=0 или S>0. Замкнутая - система, которая не обменивается с окр. средой веществом, но обменивается Е и работой (горячий чай в стакане с крышкой – на холод).

Понятие S носит статистический характер.

Энтропия S в ТД имеет троякий смысл:

1) Тепловая емкость системы.

2) ТД функция сост. системы, явл-ся мерой ее неупорядоченности.

3) Мера вероятности системы, имеет статистический характер (Больцман).

S = k*lgW, это уравнение Больцмана, k-константа Больцмана, W – ТД вероятность.

ТД вероятность (W) – это к-во микросостояний, возможных в пределах данного макросостояния; показывает сколькими способами м.б. достигнуто то или иное состояние системы. Все микросост., определяющие ТД вероятность имеют одинаковую матем. вероятность. Матем. вероятность – это среднее значение частоты появления события при массовых испытаниях.

Любая сист., стремясь к сост. ТД равновесия с Smax, занимает наиболее вероятное состояние и min свободную Е. Свободная Е (F) – часть Е, кот. полностью переходит в работу.

В изолированных системах необратимые ТД пр-сы протекают в направлении ↑ энтропии. S полностью обратимых ТД прц-сов сохраняет постоянное значение.

Второй закон ТД: в изолированной системе самопроизвольно протекают только такие процессы, которые ведут к увеличению неупорядоченности системы, т.е. к росту энтропии.

Или: существует функция состояния S – энтропия, которая следующим образом связана с теплотой, поступающей в систему, и температурой системы:

1. dS > (dQ/T) – для самопроизвольных, необратимых процессов;

2. dS = (dQ/T) – для обратимых (равновесных) процессов;

3. dS < (dQ/T) – для несамопроизвольных процессов.

В изолированной системе (dQ=0) изменение энтропии служит критерием направления процесса, т. е. является критерием обратимости и необратимости процессов: если в процессе dS > 0, то он самопроизволен, необратим, а если dS = 0, то он равновесный, обратимый. Энтропия изолированной системы или увеличивается, или остаётся постоянной, и в состоянии равновесия энтропия максимальна.

В неизолированной системе для оценки необратимости процесса необходимо иметь величину dS системы и величину dS окружающей среды.

13.Уравнение второго закона ТД. Понятие свободной и связанной энергии.

Работа в замкнутой системе не равна 0.

Свободная Е (F) – часть Е, кот. полностью переходит в работу. Энергия: 1) высшая (механич, хим, электрич.); 2) тепловая или деградированная.

TdS = dU + dA

-dA = d (U - TdS)

F=UTS – это свободная энергия Гельмгольца.

dF = dU – TdS – это запись 2 закона ТД ч/з свободную Е Гельмгольца.

Связанная энергия – та часть внутренней энергии, которая не может быть превращена в работу Вытекающая из 2-го начала ТД необходимость различ. колич. и кач.хар-ку Е нашла отражение в принятом в ТД делении Е на своб. и связ. (соот-но пригодную и непригодную к совершению в опред. условиях внеш. работы). Такое деление стало возможным после введения Р. Клаузиусом основополагающ. для ТД понятия энтропии S. В соответствии с её смыслом Г. Гельмгольц назвал произведение абсолютной температуры Т и энтропии S «связанной энергией», а остальную часть F = U – TS – «свободной энергией». Вслед за этим Дж. Гиббс ввел понятие «свободной энтальпии» G как разности между энтальпией системы H = U+ pV и связанной энергией TS. Несложно показать, что в условиях постоянства температуры T и объема V системы убыль свободной энергии Гельмгольца определяет макс. мех. работу (раб. расширения), которую может совершить си-ма при обратимом хар-ре процесса.

Поэтому свободная Е Гельмгольца и Гиббса называют соответственно изохорно – изотерм. и изобарно – изотерм. потенциалом. Однако понятие «свободной Е» (Гельмгольца и Гиббса) вовсе не характериз. «запас» превратимой Е в си-ме, поскольку как соверш.не только за счет Е самой системы, но и за счет Е окруж. среды в проц. теплообмена с ней. Больше того, связ. Е (TS), строго говоря, нельзя считать частью внутр. Е(U) или энтальпии H, поскольку для большинства случаев TS по своей величине оказывается больше них самих.

14.Доказательства применимости второго закона ТД к биосистемам.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]