Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_2_Vvedenie_termodinamicheskie_protsessy.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
404.45 Кб
Скачать

Термодинамика биологических процессов

1. Подходы: феноменологический и детальный. Значение имеют т/д параметры только в исходном и конечном состоянии. Термодинамика – это наука, изучающая наиболее общие закономерности превращения различных видов энергии в системе.

2. Практическая значимость т/д в биологии. Позволяет оценить энергетические изменения, происходящие в результате биохимических реакций; рассчитать энергию разрыва конкретных хим. связей; рассчитать осмотическое давление по обе стороны полупроницаемой мембраны; рассчитать влияние концентрации соли в растворе на растворимость макромолекул. Применяется для описания процессов, протекающих в электрохимических ячейках. Привлекается для обоснования теории возникновения и эволюции жизни на Земле.

5. Классификация ТД систем; особенности живых организмов, как ТД систем.

Система – всякий материальный объект, состоящий из большого числа частиц.

Система – совокупность взаимодействующих между собой относительно элементарных структур или процессов, объединяющихся в целое выполнением некоторой общей функции, несводимой к функциям ее компонентов. Т/д система – часть пространства с материальным содержимым, ограниченная оболочкой.

Система – тело или группа тел, реально или мысленно выделенных из окружающей среды.

Окр. среда – всё, что находится в контакте с системой.

Термодинамическая система – группа взаимодействующих тел системы, между которыми происходит обмен теплотой или веществом, либо она описывается термодинамическими параметрами.

Окружающая среда – всё, что находится в контакте с системой.

Выделяют несколько типов систем по их способности взаимодействовать с внешней средой:

1. Изолированная система – с-ма, которая не обменивается с окр. средой ни веществом, ни Е (пр: космонавт в космосе).

2. Замкнутая - система, которая не обменивается с окр. средой веществом, но обменивается Е и работой (горячий чай в стакане с крышкой – на холод).

3. Открытая т/д система - которая обменивается с окр средой и веществом и энергией (живой организм).

Т/Д функция – совокупность физич. и химич. свойств системы, которые определяют ее сост-е.

Параметры (2 основн-х типа):

  • экстенсивные, зависят от количества вещества в системе (масса, объем),

  • интенсивные, не зависят от количества вещества в системе (давление, t0).

6.Характеристика ТД функций, применяемых для анализа биолог процессов.

Функция – совокупность физ. и хим. св-в, кот. определяют конкретное сост. системы. Напр:t,V,P. ТД функции = ТД параметры. ТД параметры сост. системы – измеримые св-ва системы, связанные с Е и характеризующие её состояние.

Основные параметры состояния – параметры, поддающиеся прямому измерению.

Те, которые нельзя измерить непосредственно, рассм. как функции основных параметров сост-я.

Типы:

1) экстенсивные (=факторы ёмкости) – это ТД фукнции, кот зависят от кол-ва или числа частиц и их массы. Напр: масса, объём, E, энтропия (S), энтальпия (Н). Св-во системы = сумме свойств частей.

2) интенсивные – не зависят. Напр: t, давление, скорость изменения энтропии.

Состояние системы – совокупность всех физ. и хим. св-в системы.

ТД процесс - изменение сост. системы, характ-ся изм. её ТД параметров. Изменение может происходить при различных условиях, различают:

1). Равновесные и неравновесные процессы. Равн. пр. – непрерывный ряд равновесных сост. сист.; сост., не изм-ся во времени и не требующие для своего поддержания каких-либо внешних факторов. Неравн. — это пр-сы, после протекания кот. систему нельзя вернуть в исходное сост. без того, чтобы в ней не осталось каких-либо изменений.

2). Обратимые и необратимые процессы. Обр. – пр-сы, допускающие возможность возвращения системы в первоначальное сост. без того, чтобы в окр. среде остались какие-либо изменения. В противном случае – необр.

3). Самопроизвольные и несамопроизвольные процессы. Сам. – процессы, происходящие сами собой (не требующие затраты Е извне) и приближающие систему к равновесию. Несам. – процессы, требующие затраты Е извне.

Некоторые частные виды процессов:

а) изотермический (T = const);

б) изобарный (p = const);

в) изохорный (V = const);

г) адиабатический (нет обмена теплотой между системой и окр. средой);

д) изобарно – изотермический (p = const, T = const);

е) изохорно – изотермический (V = const, T = const).

7.Внутренняя энергия, теплота и работа, как ТД функции.

Энергия – мера определённой формы движения материи при её превращении из одной формы в другую. Е - мера способности системы совершать работу. Является произведением фактора экстенсивности на интенсивность. Напр: E=р*v, E=m*P и т.д

Закон сохранения Е: - Е не создаётся из ничего и не может превратиться в ничто.

ТД равновесие - состояние системы, при котором способность совершать работу =0 и из которой она не может выйти без затраты Е из вне. Все системы стремятся к этому состоянию.

Внутренняя Е (U) – весь запас внутр. кинетической и потенциальной Е в-ва. Абсолютное значение внутр. Е определить невозможно. Важно кол-но определить изменение внутр. Е при переходе из одного состояния в другое: ∆U=U2-U1. В равновесном сост. система обладает определённым запасом Е => внутр. Е является функцией состояния.

Работа и теплота – две возможные формы передачи Е от одной системы к др. Работа – это Е, передаваемая одним телом другому, не зависящая от t тел и не связанная с переносом массы. Работа положительна (А > 0), если она совершается системой против внешних сил, и отрицательна (А < 0), если она выполняется над системой. В хим. рассматривают работу расширения, совершаемую системой, тогда равновесному процессу всегда соответствует мах работа.

Теплота – Е, передаваемая одним телом другому, зависящая от t тел и не связанная с переносом массы. Теплота положительна (Q > 0), если теплота поступает в систему (эндотермическим процесс), и отрицательна (Q < 0), если теплота отводится из системы (экзотермический).

В равновесном состоянии система не обладает ни запасом теплоты, ни запасом работы, поэтому они являются функциями процесса. Передача теплоты или совершение работы осущ‑ся лишь при взаимодействии системы с внеш. средой или другой системой.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]