Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1_2_Vvedenie_termodinamicheskie_protsessy.docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
404.45 Кб
Скачать

Суть гипотезы Митчела можно выразить следующей схемой

Схема окислительно-восстановительного процесса и возникновения электрохимического потенциала на сопрягающей мембране: 1 – цитоплазма, 2 – матрикс, 3 –сопрягающая мембрана, 4 – АТФ-синтаза. Б – условный вид сечения митохондрии: 1 – наружная перфорированная мембрана, 2 – внутренняя сопрягающая мембрана, 3 –складки внутренней мембраны (кристы), 4 – матрикс, 5 –цитоплазма клетки.

Участок мембраны, приведенный на левом рисунке, указан кружком на правом. Восстановленный переносчик редокс- потенциала (типа НАДН, ФАДН, восстановленного цитохрома с), обозначенный как АН2, при окислении на внешней стороне мембраны отдаёт свои электроны в цепь переноса электронов и освобождает у внешней грани мембраны 2 иона Н+. Цепь переноса электронов включает локализованные в мембране подвижные переносчики (типа хинонов, растворимых в липидах) и неподвижные белки (типа цитохромов) с различными значениями редокс-потенциалов. Цепь переносит электроны по градиенту редокс- потенциалов к конечному акцептору- кислороду у противоположной грани мембраны. Это спонтанный термодинамически выгодный процесс. Мембрана в нормальном состоянии не проницаема для протонов. В результате на сопрягающей мембране образуется трансмембранный электрохимический потенциал ψ, состоящий из двух частей: электрического потенциала φ ( – внутри, + снаружи) и концентрационного потенциала протонов ([Н+] – больше снаружи и меньше внутри):

Ψ = φ + RT/F·ln [H]e/[H]i= φ + 2,3·RT/F·lg [H]e/[H]i = φ - 0,06·ΔрН

при Т = 37º С.

Здесь ΔрН – это разность показателей кислотности цитоплазмы и матрикса. Изменение кислотности, соответствующее этой гипотезе, означает закисление цитоплазмы и защелачивание матрикса.

Электрохимический потенциал является мерой потенциальной энергии протонов, полученной за счёт разделения мембраной продуктов процесса окисления АН2 и «векторного», т. е. направленного в пространстве переноса зарядов. Время, в течение которого эта энергия может сохраняться, лимитируется изоляционными свойствами мембраны. Главным элементом «утечки» протонов сквозь мембрану является трансмембранный протонный канал в ферменте АТФ-азе, способном вести синтез АТФ за счёт энергии протонного потока. Однако если есть конкурирующий канал утечки электрического или концентрационного потенциала, то диссипация энергии может сделать невозможной синтез АТФ, т. е. может произойти разобщение окисления и фосфорилирования.

Сегодняшние представления. Митохондриальная АТФ-аза представляет собой белок, состоящий из двух блоков: условно говоря, ножки F0, пронизывающей мембрану, и шляпки F1, примыкающей к ножке со стороны матрикса. Внутри ножки этого «гриба» есть канал, по которому протоны с внешней (цитоплазматической) стороны мембраны под действием электрохимического потенциала устремляются внутрь митохондрии, где встречаются со шляпкой. Под действием «напора» потока протонов в субъеденицах шляпки возникают конформационные напряжения, которые заставляют «сердцевину» шляпки вращаться, совершая химическую работу по синтезу АТФ из АДФ и Ф.

Схема устройства этого фермента

Гидрофобный комплекс F0 содержит 1 субъединицу a, 2 субъединицы b и около 10 мелких субъединиц с. Входной протонный канал, ориентированный в сторону кислого цитоплазматического пространства, находится между субъединицами а и с. В нативной структуре, однако, сквозной проход протона в щелочную область матрикса митохондрии перекрыт элементами комплекса F1, и протоны могут продвигаться насквозь лишь при взаимном перемещении субъединиц. Шляпка комплекса F1, имеющего гидрофильную поверхность, состоит из 3α субъединиц, чередующихся с 3β субъединицами, образуя сфероид диаметром около 10 нм и высотой 8 нм. Этот сфероид в целом неподвижен за счёт связи через субъединицу δ с субъединицей в, сердцевина же шляпки (субъединица γ с регулятором активности комплекса ε) способна вращаться вокруг оси, перпендикулярной плоскости мембраны. Однако, выходной протонный канал, обращённый в щелочную среду матрикса, открывается только при наличии всех необходимых субстратов для синтеза АТФ. На «холостое» вращение «ротора» протоны не тратятся! Многие детали работы этой молекулярной машины пока неизвестны, но в общих чертах это выглядит так. Протоны, проникая к основанию комплекса F1 через входной канал комплекса F0, контактирующий с «кислой» средой цитоплазмы, протонируют карбоксильные группы аминокислот белка субъединицы с (это аспарагин и аргинин). Взаимодействие и обмен протонами между соседними единицами с и а вызывает конформационную перестройку структуры белков, результатом которой является поворот подвижной части F1 (предположительно совместно с субъединицей с) скачком на 120º на каждую пару вошедших протонов. Предполагается, что поступившие в ферментный комплекс протоны принимают участие в протонировании аминокислот β субъединиц, что вызывает в них конформационные переходы, сопровождающиеся изменением их сродства к участникам реакции фосфорилирования (АДФ, Ф, АТФ). В частности, установлено, что синхронно с вращением «роторной» части комплекса происходит протонирование субъединицы β и ассоциация её с АДФ и Ф,затем конденсация этих субстратов с образованием АТФ и Н2О, сильно связанных с субъединицей, и на следующем этапе – депротонирование субъединицы с высвобождением протонов в щелочную среду матрикса. Последний этап конформационного перехода сопровождается резким уменьшением сродства β субъединицы к АТФ (примерно на 6 порядков!) и отщеплением продуктов фосфорилирования. Стехиометрия процесса такова, что на каждый скачок в повороте ротора синтезируется 1 молекула АТФ, а на один полный оборот соответственно - 3 молекулы. В нормальных физиологических условиях ротор может совершать до 17 оборотов в секунду, обеспечивая скорость синтеза около 50 молекул АТФ в одном комплексе в секунду. Разумеется, синтез АТФ идёт за счёт высокого сродства сопря-гающей реакции трансмембранного переноса протона, но как организован процесс сопряжения? Как показали измерения, в активном центре ферментного комплекса реакция синтеза АТФ

АДФ + Ф + Н+ = АТФ + Н2О

находится в термодинамическом равновесии. Это невозможно в водном растворе. Но в активном центре комплекса F0F1, конформационные изменения, вызванные пртонированием, приводят к двоякому преобразованию сродства: дегидратация отрицательно заряженных реагентов АДФ и Ф, которая в водной среде понижала их свободную энергию и, возможно, их принудительное сближение против сил их электростатического отталкивания (величина этой «энтальпийной» части сопряжения пока неизвестна) и главное уменьшению активности продуктов реакции. Сильное связывание АТФ и, возможно, связывание или выброс воды из реакционного центра резко уменьшают вероятность обратной реакции. Это типичный пример «энтропийного» механизма сопряжения. При этом основная часть электрохимического потенциала протонов затрачивается на дегидратацию АДФ и Ф и на выведение АТФ из активного центра в водную фазу. В ней АТФ становится макроэргом, но самопроизвольно гидролизоваться до АДФ и Ф не может в отсутствие необходимого фермента. Иначе говоря, участники сопрягаемой реакции, невыгодной в водной среде, переносятся в специально организованную полость активного центра фермента, где она становится энергетически возможной, а свободная энергия сопрягающего процесса передаётся на конформационные степени свободы фермента и тратится на совершение работы по захвату и высвобождению участников реакции.

Таким образом, конформационная гипотеза, хотя и в сильно изменённом виде, также нашла своё место в теории окислительного фосфорилирования. Если хемиосмотическая гипотеза объяснила термодинамику сопряжения окисления и фосфорилирования, то конформационная гипотеза объяснила молекулярный механизм реализации протонного потенциала в химической реакции синтеза АТФ.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]