- •Введение. Термодинамические процессы
- •Термодинамика биологических процессов
- •Параметры (2 основн-х типа):
- •8.Первый закон тд в биологии; доказательства его применимости к живым системам. Своеобразие проявления первого закона тд в биосистемах.
- •9.Характеристика энтальпии системы как функция состояния. Тепловой эффект процесса.
- •Практич. Применение:
- •Следствия из закона Гесса:
- •Осн. Положения:
- •Применимость 2 закона т/д для характеристики свойств биосистем
- •Применимость второго закона тд к биосистемам:
- •15.Теория Онзагера. Гетерогенность энтропии в биосистемах. Уравнение второго закона термодинамики для открытых систем.
- •Механизмы саморегуляции систем
- •18. Организм и клетка как химическая машина. Химический потенциал живой системы.
- •19.Критерии спонтанности, самопроизвольности протекания процессов в тд системах.
- •20.Применение тд в биологии: методы расчёта стандартной и реальной свободной энергии биохимических процессов. Свободная энергия Гиббса и Гельмгольца.
- •Расчёт тд параметров для тд систем:
- •21. Потенциал переноса атомных группировок в различных трансферазных реакциях.
- •21.Понятие макроэргической связи. Характеристика атф как универсального аккумулятора энергии в биосистемах.
- •23.Причины высоких значений потенциала переноса при гидролизе ди- и полифосфатов. Разнообразие макроэргических соединений в биосистемах.
- •24.Типы энергетического обмена в биосистемах
- •26. Термодинамическая характеристика анаэробного распада глюкозы. Расчет кпд.
- •Баланс атф при анаэробном гликолизе
- •Анаэробная фаза дыхания (гликолиз)
- •27. Термодинамическая характеристика окисления пвк в цикле Кребса. Ресчет кпд.
- •Значение окислительного декарбоксилирования пирувата
- •Регуляция общего пути катаболизма
- •28. Термодинамика полного окисления глюкозы. Расчет биологического окисления глюкозы.
- •Реакции подготовительного этапа:
- •Общее уравнение декарбоксилирования и окисления пвк:
- •29. Этапы унификации энергетических субстратов в процессах катаболизма.
- •Суть гипотезы Митчела можно выразить следующей схемой
- •33. Разнообразие механизмов образование атф и их вклад в энергетику клетки.
- •В упрощенном виде ресинтез атф аэробным путем может быть представлен схемой:
- •Гликолитический путь ресинтеза атф
- •Итоговое уравнение анаэробного расщепления гликогена имеет следующий вид:
- •34. Различные типы электрон-транспортных путей в живых организмах. Их роль в биоэнергетике клетки.
- •Электронтранспортные цепи митохондрий эукариот
- •Электронтранспортные цепи бактерий
- •35. Биофизика фотосинтеза
- •Квантовый расход фотосинтеза для одноклеточных водорослей в лабораторных условиях составляет 8-12 квантов на молекулу co2.
29. Этапы унификации энергетических субстратов в процессах катаболизма.
ЦТК начинается с подготовительного этапа – окислительное декарбоксилирование ПВК до ацетил –КоА. ПВК является одним из рех конечных продуктов гидролиза при гликолизе – анаэробного процесса распада глюкозы. Ацетил – КоА – при окислении аминокислот и жирных кислот, т.е. не только углеводов. Таким образом, в качестве энергетического субстрата могут выступать все основные запасные вещества – углеводы, белки, жиры.
Наиболее важный процесс деградации жирных кислот – β – окисление, которое происходит в митохондриях. При этом жирные кислоты активируются в цитоплазме и присоединяются к ацетил – КоА, а затем с помощью транспортной системы попадают в митохондриальный матрикс, где разрушаются в β – окислении до ацетил –КоА, который в свою очередь полностью окисляется до СО2 в ЦТК.
Таким образом, β – окисление тесно связано с ЦТК и дыхательной цепью. Так при каждом цикле такого окисления образуется 1 молекула ФАДН2 и 1 молекула НАДН2. В дыхательной цепи ФАДН2 через КоА дает 2 молекулы АТФ, а НАДН2 – 3 молекулы АТФ. А весь цикл дает 5 молекул АТФ.
При β – окислении пальмитиновой кислоты происходит 7 циклов; в итоге 35 молекул АТФ.
8 молекул ацетил – КоА. Сгорая в ЦТК, каждая дает 12 молекул АТФ; в итоге 96 молекул АТФ.
Таким образом, при полном окислении: 35+96=131 молекула АТФ, но на активирование пальмитиновой кислоты ушла 1 молекула, поэтому 130 молекул АТФ.
130 АТФ*35,4= 4602 кДж\моль*Е
При сгорании пальмитиновой кислоты образуется 9797 кДж энергии.
η=4602/9797 * 100%=47%
47 % энергии идет на синтез АТФ, остальная часть энергии рассеивается в виде теплоты
30.Энергетическая сущность окислительного фосфорилирования. Коэффициент Р/О.
Окислительное фосфорилирование осуществляет в живых клетках синтез молекул АТФ из АДФ и фосфорной кислоты за счет энергии окисления молекул органических веществ (субстратов). В результате о.ф. в клетка накапливается АТФ – макроэргическое соединение, расходуемое затем на обеспечение энергией различных процессов жизнедеятельности. Основные субстраты о.ф. – органические кислоты, образующиеся в цикле трикарбоновых кислот.
Энергия, образующаяся при прохождении потока электронов по дыхательной цепи, используется для сопряженного фосфорилирования АДФ. Соотношение окисления и фосфорилирования определяется коэфф Р/О – количество моль фосфорилированного АДФ на ½ моль кислорода. Коэфф Р/О зависит от точки вхождения восстановительных эквивалентов в цепь транспорта электронов. Для НАДН2 и субстратов (малат), которые окисляются НАДН-дегидрогеназами. Р/О=3. Для ФАДН2 , когда происходит превращение сукцината в фумарат в ЦТК
Р/О=2.
Т.е.
и
от НАДН2
И ФАДН2
проходят через 3 или 2 участка сопряжения,
соответственно. Т.е при переносе 1 пары
от НАДН2
НА О2
образуется 3 АТФ, а от ФАДН2
-2 АТФ. Чтобы найти максимальное значение
Р/О необходимо разделить количество
,
перенесенных из матрикса в межмембранное
пространство митохондрий при восстановлении
1 атома О2
НА 3.(синтез 1 молекулы внутри митохондр.
АТФ сопряжён с возвращением в матрикс
2-х Н+,
а антипорт АТФ вн/ нар-1 Н+).
Цепь транспорта электронов функционирует как протонная (Н+)-помпа, осуществляя перенос протонов из матрикса ч/з внутреннюю мембрану в межмембранное пространство. Перенос протонов приводит к возникновению разности концентрации Н+ с двух сторон митохондриальной мембраны: более высокая концентрация будет снаружи и более низкая – внутри.
Электрохим потенциал способен заставлять протоны двигаться в обратном направлении, но мембрана непроницаема для них кроме отдельных участков, называемых протонными каналами. Обратный перенос протонов в матрикс является экзоорганическим процессом, высвобождающаяся при этом энергия используется на фосфорилирование АДФ. Этот процесс катализирует Н+-АТФ-синтетаза. Дыхательная цепь является частью процесса окислительного фосфорилирования.
31. Современное представление о строении и переносе электронов в дыхательной цепи митохондрий.
Последовательность расположения компонентов дыхательной цепи определяется величиной их RedOx-потенциала и способностью переносить только электроны (e) либо одновременно и электроны, и протоны (p). Электроны переносятся от элементов с более низкими стандартными потенциалами (т.е. от более активных восстановителей) к элементам с более высокими стандартными потенциалами.
I комплекс – НАДН2:CoQ-оксидоредуктаза (ФМН-зависимая, с FeS-центрами). Принимает на стороне митохондриального матрикса 2 Н (2 e + 2 p) от НАДН2, имеющего самый низкий стандартный потенциал (Е0= - 0,32 В), окисляя его до НАД, высвобождает 2 p в межмембранное пространство МТХ, а 2 e передает дальше по e-транспортной цепи – на III комплекс.
II комплекс – сукцинат-дегидрогеназа (ФАД-зависимая, с FeS-центрами), принимает 2 e и 2 p от ФАДН2 с Е0= - 0,15 В (окисляя его до ФАД) на стороне митохондриального матрикса и передает их напрямую на CoQ III комплекса, минуя I комплекс.
III комплекс – CoQН2:cyt c-оксидоредуктаза (с FeS-центром; включает в себя убихинон, FeS-белок и цитохромы b, c1, c), принимает e от комплексов I и II и передает на IV комплекс e-транспортной цепи, а также высвобождает в межмембранное пространство 2 p, полученных от II комплекса либо захваченных из митохондриального матрикса сопряжено с переносом пары e от I комплекса.
IV комплекс – цитохромоксидаза (комплекс цитохромов a, a3), переносит e с cyt c III комплекса на конечный акцептор – О2, восстанавливая его до Н2О с Е0= + 0,82 В в митохондриальном матриксе.
НАДН2-дегидрогеназа и CoQ – способны переносить как e, так и р. Поэтому являются 2 точками сопряженной перекачки р. Механизм третьей точки сопряжения не ясен. В итоге переносятся по цепи 2 e и с одной стороны внутренней митохондриальной мембраны на другую – 6 р. В случае, когда донор e – ФАДН2, только 4 р, т.к. минуется первая точка сопряжения.
32. Современные представления о механизме сопряжения окисления и фосфорилирования в биосистемах.
В начале исследования этого механизма выдвигаемые гипотезы формировались в две группы: химическую и конформационную.
Сторонники химической гипотезы, к которым относилось подавляющее число исследователей, отталкивались от прецедента субстратного фосфорилирования, которое реализуется на предварительных стадиях гликолиза. Это обычная ферментативная реакция между водорастворимыми субстратами.
Конформационная гипотеза опиралась на представление о том, что процесс окисления НАДН может привести к формированию локальных напряжений внутренней мембраны митохондрий, запасающих часть энергии, выделяемой в процессе окисления. Затем, возвращаясь к исходному состоянию, мембрана подобно расправляющейся пружине может передать свободную энергию участникам реакции фосфорилирования. Такие изменения структуры митохондриальной мембраны могли бы быть опосредованы, например, каким-либо мембранно-связанным белком.
Затем появилась альтернативная гипотеза, получившая название хемиосмотической. В 1961 году английский биохимик П. Митчел высказал предположение, что для сопряжения окисления НАДН2 с синтезом АТФ из АДФ и Ф необходима целостность внутренней мембраны митохондрий, т. е. она должна чётко отделять внутреннее пространство митохондрии («матрикс») от цитоплазмы клетки. Это была качественно новая идея. То, что многие ферменты в клетке нормально функционируют только в тесном контакте с мембраной или даже встроены внутрь мембраны, было известно, но топология мембранной системы никогда не считалась важной для протекания биохимических реакций.
