
- •1.2. Основные термины и положения термодинамики
- •1.3. Общие сведения о равновесной термодинамике
- •1.3.1. Первое начало термодинамики. Энтальпия.
- •1.3.2. Второе начало термодинамики
- •Энтропия
- •1.3.3. Третье начало термодинамики
- •1.5. «Всеобщий закон биологии» Бауэра
- •Особенности живых организмов с позиции термодинамики
- •Химическое равновесие
- •Влияние внешних факторов на химическое равновесие.
- •Химическая кинетика и катализ
- •Катализ
- •Теории гетерогенного катализа
- •Микрогетерогенный катализ
- •Свойства растворов и гетерогенных систем
- •1.Общая характеристика. Концентрация растворов
- •Способы выражения концентрации растворов. Важной характеристикой растворов является концентрация.
- •2. Растворимость
- •3. Коллигативные свойства растворов
- •1) Повышение температуры кипения раствора пропорционально количеству молей растворенного вещества при условии, что количество молей растворителя постоянно:
- •Электрическая проводимость водных растворов. Электролиты
- •Теория сильных электролитов.
- •Роль рН в биологических жидкостях организма
- •Буферные растворы
- •Гидролиз солей
- •Закон действия масс в гетерогенных системах. Растворимость плохорастворимых электролитов.
- •Лекция № 4 Физико-химия дисперсных систем в функционировании живых систем краткий исторический обзор развития
- •Свойства коллоидных растворов (к.Р.).
- •Классификация дисперсных систем
- •Методы получения дисперсных систем
- •Очистка дисп. Систем. Диализ
- •Строение коллоидной частицы
- •Двойной электрический слой (дэс) мицеллы
- •Электрокинетические явления
- •Устойчивость коллоидных систем
- •Коагуляция коллоидных систем
- •Механизм коагуляции электролитами
- •Значение коллоидных систем
- •Универсальность молекулярно кинетических свойств растворов и дисперсных систем
- •Осмотическое давление
- •Диффузия. Закон фика.
- •Броуновское движение
- •Теория флуктуаций
- •Оптические свойства диспесных систем
- •Поглощение света в дисперсных системах
- •Окрашенные коллоиды в природе и технике
- •Ультрамикроскопия.
- •Лекция № 4 Физико-химия поверхностных явлений в функционировании живых систем
- •Поверхностное натяжение обусловлено некомпенсированными межмолекулярныи силми на грнице раздела фаз.
- •Граница раздела фаз газ-твердое тело
- •Типы адсорбционных взаимодействий
- •Изотермы адсорбции
- •Изотерма Генри
- •2. Теория мономолекулярной адсорбции. Изотерма Ленгмюра.
- •Теория полимолекулярной адсорбции. Изотерма бэт.
- •Изотерма Фрейндлиха
- •Адсорбция на границе газ-жидкость. Изотерма Гиббса.
- •Закономерности адсорбции на твердой поверхности из раствора. Ионнообменная адсорбция.
- •На поверхности твердого адсорбента преимущественно адсорбируются ионы, имеющие с этим адсорбентом общую атомную группировку.
- •Если поверхность адсорбента имеет заряд, то, преимущественно, будут адсорбироваться ионы с ионы с противоположным зарядом, а также ионы, образующие с поверхностью нерастворимые соединения.
- •Изобары и изостеры адсорбции.
- •Хроматография.
- •Применение адсорбционных процессов в медицине
- •Лекция № 6 Комплексные соединения.
- •Метод теории кристаллического поля.
- •Метод мо
- •Комплексообразование в организме
- •1. Переходные металлы в живых организмах; аминокислотные остатки как лиганды
- •2. Имидазол: его строение, координационные и кислотно-основные свойства
- •3. Строение гема
- •4.Гем в белковой молекуле. Строение миоглобина
- •5. Комплекс гема с кислородом. Лигандыπ -акцепторного типа.
- •6. Строение дистального кармана: дополнительная причина прочности связи железас кислородом
- •Биологически важные гетероциклические соединения
- •Аминокислоты, пептиды, белки
- •Углеводы: моно, ди- и полисахариды
- •Нуклеотиды и нуклеиновые кислоты
- •Липиды и низкомолекулярные биорегуляторы
- •Алкалоиды
Электрическая проводимость водных растворов. Электролиты
Электролиты – вещества, проводящие электрический ток в растворе или в расплаве.
Поведение электролитов объяснила теория электролитической диссоциации, разработанная в 1887 году шведским ученым С. Аррениусом. .состояние в растворе сильных электролитов было объяснено теорией Дебая и Хюккеля (1923 г).
Для количественной характеристики диссоциации применяют две величины: степень и константу диссоциации.
Согласно Аррениусу, при растворении в воде молекулы электролита распадаются на ионы, т. е. диссоциируют по обратимой реакции.
Атомы или группы атомов, которые несут электрический заряд, называются ионами (Са2+, Na+, Cl- и т. д.). Исходя из этого, процесс растворения хлорида натрия в воде с образованием электрически заряженных частиц запишем так: NaCl↔Na+ + Cl-
Вещества, которые растворяются в воде с образованием растворов, проводящих электрический ток, называются электролитами.Процесс распада веществ на ионы называется электролитической диссоциацией. Электролитическая диссоциация — процесс обратимый.
Степень диссоциации
Электролитическая ионизация вызывается взаимодействием полярных молекул растворителя с частицами растворяемого вещества.
Электролитическая диссоциация в растворе происходит в результате сложного физико-химического взаимодействия молекул электролита с полярными молекулами растворителя (например, воды). В общем виде процесс растворения в воде вещества К+А-, являющегося соединением с типичной ионной связью, можно записать следующим образом:
К+А- + nH2O →K+(H2O)х + А-(Н2О)n-x.
Для количественной оценки процесса диссоциации важное значение имеют степень диссоциации и константа диссоциации.
Степень электролитической диссоциации α равна отношению распавшихся на ионы молекул (n) к общему числу молекул (N) электролита, введенных в раствор:
α=(n/N)*100%
Степень диссоциации электролитов зависит от концентрации растворов: с уменьшением концентрации она растет.
Процесс электролитической диссоциации удобнее характеризовать константой диссоциации. Поскольку процесс обратимый, то здесь могут быть применены законы химического равновесия. Для вещества К+А-, диссоциирующего по схеме
KA↔K++A-,
константа Кд может быть определена:
Kд=(C(K+)*C(A-)/C(KA)),
где С(K+), С(A-) — молярные концентрации ионов К+ и А-, а С(КА) — концентрация недиссоциированных молекул.
Kд – константа диссоциации –это отношение произведения концентрации диссоциированных ионов к концентрации недиссоциированных молекул электролита в степени их стехиометрических коэффициентов.
Kдпоказывает во сколько скорость диссоциации больше скорости ассоциации. Чем больше Kд тем сильнее электролит.
Kд зависит от природы электролита и растворителя, температуры и не зависит от концентрации раствора.
Константа и степень электролитической диссоциации количественно взаимосвязаны. Если общее количество вещества КА обозначить С, то С(К+) = С(А-) = αС. Концентрация же недиссоциированных молекул С(КА) = (1 —α) С. Подставив эти значения в предыдущую формулу, получим
К=α2С/(1-α).
Это уравнение выражает закон разбавления Оствальда, который даёт возможность определить степень диссоциации при различных концентрациях электролита, если известно значение Кд.
Закон разбавления Оствальда гласит: С разбавлением раствора слабого электролита степень диссоциации увеличивается.
По степени диссоциации в не очень разбавленных растворах электролиты принято делить на сильные, слабые и средней силы. Сильные электролиты имеют α>30%; слабые — α<3%, а электролиты средней силы —α в пределах от 3 до 30 %. Эти значения α относятся к 0,1 н. раствору.
Следует иметь в виду, что деление электролитов на слабые, средние и сильные носит условный характер и зависит от природы растворителя, концентрации электролита и других факторов.
Степень диссоциации и константа диссоциации связаны с концентрацией раствора: К≈α2С или α=√Кд/С