
- •Вопросы к экзамену
- •1.Предмет и задачи микробиологии, ее место и роль в современной биологии; значение микроорганизмов в природе и жизни человека; промышленная микробиология.
- •2. Возникновение и периоды развитие микробиологии: морфологический, физиологический, биохимический, генетический.
- •4. Общая характеристика вирусов; бактериофаги: свойства, химический состав, строение, распространение в природе, особенности взаимодействия с бактериальными клетками.
- •5. Схематичное строение бактериальной клетки, ее химический состав, функции отдельных компонентов клеток; морфология и размеры бактерий, их плеоморфизм.
- •6. Химический состав, строение и функции клеточных стенок разных бактерий (различия клеточных стенок грамположительных и грамотрицательных бактерий).
- •7. Бактериальные сферопласты и протопласты: методы получения, свойства, применение; l-формы бактерий и их характеристика.
- •8. Понятие о поверхностных структурах бактериальной клетки; химический состав, организация и функции капсул, слизистых слоев, чехлов, фимбрий и пилей.
- •9. Цитоплазматическая мембрана бактерий: особенности химического состава, строение и функции; производные цитоплазматической мембраны и их функции у разных бактерий.
- •10. Транспорт веществ через цитоплазматическую мембрану.
- •11. Цитоплазма бактерий (химический состав и организация) и внутрицитоплазматические включения (их природа и значение для клетки); рибосомы бактерий.
- •12. Наследственный аппарат бактериальной клетки: химическая и структурная организация, функции; репликация днк у бактерий; концепция репликона.
- •13. Органеллы движения бактерий: строение, расположение и механизм функционирования бактериальных жгутиков; строение клетки спирохет, движение спирохет и бактерий со скользящим типом передвижения.
- •14. Эндоспоры (строение и свойства эндоспор, процесс спорообразования, практическое значение) и другие покоящиеся формы бактерий.
- •15. Типы размножения бактерий.
- •16. Питательные среды в микробиологии, их классификация (по составу, назначению и физическому состоянию); требования, предъявляемые к питательным средам.
- •17. Накопительные и чистые культуры микроорганизмов, методы их получения, значение; культивирование аэробных и анаэробных микроорганизмов, поверхностное и глубинное культивирование.
- •18. Методы количественного учета микроорганизмов и методы хранения чистых культур микроорганизмов.
- •20. Рост микроорганизмов при непрерывном культивировании; синхронные культуры, способы их получения и значение; культивирование иммобилизированных клеток микроорганизмов.
- •21. Рост микроорганизмов в зависимости от температуры (психрофилы, мезофиллы и термофилы); концентрации растворов (физиологическая сухость, осмотическое давление, особенности осмофилов, галлофилы).
- •22. Радиация, характер ее действия на микроорганизмы, устойчивость микроорганизмов к ультрафиолетовым лучам и ионизирующему излучению; влияние гидростатического давления.
- •23. Отношение микроорганизмов к молекулярному кислороду: аэробы и анаэробы (облигатные и факультативные), аэротолерантные анаэробы и микроаэрофилы; значение рН среды для роста микроорганизмов.
- •24. Характер и механизмы действия химических веществ на жизнедеятельность микроорганизмов; микробоцидное действие химических веществ; консерванты.
- •25. Антибиотики, их природа, механизм действия на бактериальную клетку, использование антибиотиков в практических целях.
- •26. Репарация повреждения днк у микроорганизмов (фотореактивация, темновая и рекомбинативная репарации, sos-ответ), молекулярные механизмы репарационных процессов.
- •27. Питание микроорганизмов: физиологические группы питания; химические вещества как питательные субстраты; ферменты микроорганизмов, обеспечивающие утилизацию питательных веществ.
- •28. Метаболизм микроорганизмов, виды и основные назначения метаболических реакций, их общая характеристика и особенности.
- •29. Общая характеристика энергетического метаболизма; источники энергии у микроорганизмов.
- •30. Пути катаболизма глюкозы у микроорганизмов: характеристика гликолиза, окислительного пентозофосфатного пути, пути Энтнера-Дудорова.
- •31. Аэробное дыхание, цикл Кребса.
- •37. Общая характеристика конструктивного метаболизма (биосинтез аминокислот, углеводов, нуклеотидов, липидов); основные предшественники и пути биосинтеза.
- •1. Общая характеристика конструктивного метаболизма
- •2. Биосинтез аминокислот: основные предшественники
- •3. Биосинтез нуклеотидов
- •4. Биосинтез липидов, жирных кислот и фосфолипидов.
- •5. Биосинтез углеводов
- •44. Плазмиды бактериальных клеток: природа, организация, свойства и значение для бактериальной клетки, взаимодействие плазмид с хромосомой, использование плазмид в генетической инженерии.
- •45. Системы рестрикции и модификации бактериальной клетки: обнаружение, механизм, значение для клетки, классы ферментов рестриктаз
- •46. Генетическая инженерия; клонирование генов в клетках бактерий; успехи и проблемы биотехнологии.
- •47. Регуляция клеточного метаболизма; свойства аллостерических белков, эффекторные свойства метаболитов.
- •48. Регуляция активности ферментов: ретроингибирование, регуляция разветвленных
- •49. Регуляция синтеза ферментов у бактерий: оперонный принцип организации бактериальных хромосом; индуцибельные опероны и механизмы их функционирования; катаболитная репрессия, диауксия.
- •52. Симбиотические и конкурентные взаимоотношения между микроорганизмами, и факторы их определяющие; примеры.
- •62. Метилотрофные бактерии: облигатные и факультативные метилотрофы, практическое их применение.
- •63. Псевдомонады: их биологические особенности и практическое значение; Энтеробактерии: их систематика, характеристика и значение отдельных представителей для человека.
- •64. Миксобактерии и цитофаги; цикл развития миксобактерий с образованием плодовых тел.
- •65. Риккетсии и хламидии: жизненный цикл развития хламидий; заболевания, вызванные хламидиями и риккетсиями.
- •66.Спирохеты; грамотрицательные кокки, входящие в семейство Neisseriaceae.
- •67. Группы молочнокислых и пропионовокислых бактерий: их биологические свойства, значение и распространение в природе.
- •70. Микобактерии и микоплазмы: характеристика важнейших групп организмов, факторы их вирулентности.
12. Наследственный аппарат бактериальной клетки: химическая и структурная организация, функции; репликация днк у бактерий; концепция репликона.
Генетический материал прокариот представлен молекулой ДНК, уложенной в компактную структуру и локализованной в ограниченных участках цитоплазмы, не имеющей, в отличие отэукариот, собственной ядерной мембраны. Учитывая эти особенности, генетический аппарат прокариот принято называть нуклеоидом. ДНК бактерий имеет форму нити, замкнутой в кольцо. Эта замкнутая в кольцо молекула ДНК включает несколько тысяч генов, расположенных линейно, и называется хромосомой.Выступы, или ветви, пронизывают цитоплазму и образуют нечто вреде ореола вокруг сердцевины. Полностью «уложенный» нуклеоид представляет собой достаточно компактное образование. Стабилизирующую роль в такой организации играют специфические белки.
Важную роль как для сохранения целостности структуры, так и для функционирования генома бактерий играет прикрепление нуклеоида к цитоплазматической мембране. Имеются фиксированные точки прикрепления нуклеоида к мембране: точка начала репликации и точка завершения репликации. Считается, что теоретически возможны три механизма репликации ДНК:1. Консервативный, при котором сохраняется целостность всей родительской двойной спирали(не происходит раскручивания спирали), и она является матрицей для синтеза себе подобной. 2. Дисперсивный, в соответствии с которым родительская молекула ДНК распадается на фрагменты, а синтез новых цепей происходит на фрагментах, которые затем крест-накрест объединяются с отрезками нового материала. 3. Полуконсервативныйпредполагает, что родительская двойная
спираль раскручивается, и каждая полинуклеотидная цепь служит матрицей для синтеза новой комплементарной цепи. Таким образом, новая двойная молекула оказывается«гибридом» старой и вновь синтезированной цепи.Связь бактериальной хромосомы с цитоплазматической мембраной играет существенную роль в регуляции их репликации. Существуют две модели, объясняющие регуляцию репликации бактериальной ДНК. Согласно модели, предложенной Ф. Жакобом, С. Бреннером и Ф. Кьюзеном(1963), структура, способная самостоятельно реплицироваться, называется репликоном: это относится к хромосомам и плазмидам бактерий. Репликон должен иметь кольцевую форму и реплицироваться не по частям, а как единое целое. Согласно этой модели, репликон должен быть прикреплен к цитоплазматической мембране и обязательно обладать двумя специфическими детерминантами или генами–структурным геном и геном-репликатором. При росте клетки от мембраны поступает сигнал на структурный ген и активирует его. Происходит синтез специфического белка-инициатора, который действует на ген-репликатор, что приводит к началу процесса репликации, который продолжается вдоль всего репликона и заканчивается копированием всей его структуры. После репликации ДНК поступает обратный сигнал на мембрану, инициируя деление клетки. Данная модель получила название модели позитивной регуляции репликации. Кроме того, существует модель негативной регуляции репликации(Р. Притчард, П. Барт, Дж. Коллинз, 1969). В соответствии с этой моделью в составе репликона есть ген, отвечающий за синтез белка-репрессора, который при высокой концентрации негативно действует на инициацию репликации, а в малой концентрации не влияет на этот процесс. По мере роста клетки концентрация репрессора снижается и создается возможность репликации хромосомы или плазмиды.