
- •Министерство образования и науки российской федерации федеральное агентство по образованию
- •Архитектура эвм
- •Часть 2, 3
- •Глава 5. Уровни организации эвм.
- •5.1. Машинный уровень организации
- •5.1.1. Форматы команд.
- •5.1.2. Адресация данных.
- •6.2.1.1. Прямые способы адресации.
- •6.2.1.2. Непрямые способы адресации:
- •3. Автоинкрементная, автодекрементная (индексная) адресация.
- •5.1.3. Адресация команд.
- •5.1.4. Типы машинных команд.
- •5.1.5. Команды обработки данных.
- •5.2. Микропрограммный уровень организации эвм.
- •5.2.1. Принцип микропрограммного управления.
- •5.2.2. Описание функциональных микропрограмм.
- •5.2.3 Набор микроопераций и микроэлементов.
- •1°. Шина.
- •2°. Регистры.
- •3°. Счетчики.
- •4°. Сумматоры.
- •5°. Преобразователи кодов.
- •6°. Вычисление значений логических условий.
- •7°. Комбинированные операционные элементы.
- •5.2.4. Структурное построение и функционирование микропрограммных устройств управления.
- •5.3. Системный уровень организации
- •Глава 6. Организация памяти вс.
- •6.1. Виды запоминающих устройств. Иерархия памяти.
- •6.2. Организация оперативной памяти.
- •Глава 7. Виды и архитектура процессоров.
- •7.1. Матричный процессор.
- •7.2. Процессор с конвейеризацией команд и процессор с конвейеризацией операций.
- •7.3. Суперскалярный процессор.
- •7.4. Коммуникационный процессор
- •7.5. Архитектуры cisc и risc.
- •Глава 8. Организация связей в эвм.
- •Глава 9. Основные классы современных параллельных компьютеров.
- •9.1. Симметричные мультипроцессорные системы (smp) (Symmetric Multi-Processing)
- •9.2. Массивно-параллельные системы (мрр) (Massively Parallel Processing)
- •9.3. Системы с неоднородным доступом к памяти (numa) (non uniform memory access)
- •9.4. Параллельно-векторные системы (pvp)
- •9.5. Кластерные системы
- •Глава 10. Межпроцессорные сети связи в эвм mpp типа (Interconnect Network)
- •Глава 11. Эффективная организация дисковых накопителей при организации параллельного и независимого доступа
- •11.1. Общие вопросы организации.
- •11.2. Время обслуживания.
- •11.3. Затраты и целесообразность.
- •11.4. Технология i2o в raid-контроллерах.
- •Глава 12. Параллельные и распределенные системы Введение.
- •Недостатки мультипроцессоров
- •Pc необходимо объединять в сети, поскольку возникает
- •12.1. Операционные системы мультипроцессорных эвм
- •12.1.1 Процессы и нити
- •12.1.2. Взаимодействие процессов
- •12.1.3 Планирование процессоров
- •12.2. Коммуникации в распределенных системах
- •Локальные сети.
- •Клиент-сервер
- •Удаленный вызов процедур
- •Обмен сообщениями между прикладными процессами send, receive (адресат/отправитель, [тэг], адрес памяти, длина)
- •12.3. Синхронизация в распределенных системах
- •12.3.1. Синхронизация времени
- •Логические часы.
- •Физические часы.
- •12.3.2 Выбор координатора
- •Алгоритм "задиры"
- •Круговой алгоритм.
- •12.3.3 Взаимное исключение Централизованный алгоритм
- •Алгоритм с круговым маркером
- •Алгоритм древовидный маркерный (Raymond)
- •Децентрализованный алгоритм на основе временных меток.
- •Алгоритм широковещательный маркерный (Suzuki-Kasami).
- •12.3.4. Координация процессов
- •12.4. Распределенные файловые системы
- •12.4.1 Архитектура распределенных файловых систем
- •Интерфейс файлового сервера
- •5.1.2 Интерфейс сервера директорий
- •Различают две формы прозрачности именования
- •Семантика разделения файлов
- •12.4.2 Реализация распределенных файловых систем
- •Использование файлов
- •5.2.2 Структура системы
- •Кэширование
- •Когерентность кэшей.
- •Размножение
- •12.4.3. Пример: Sun Microsystems Network File System (nfs)
- •Архитектура nfs.
- •Протоколы nfs.
- •Реализация nfs
- •Список литературы
- •Оглавление:
3. Автоинкрементная, автодекрементная (индексная) адресация.
К необходимости введения такого способа адресации приводят задачи обработки данных, хранящихся в последовательно расположенных ячейках памяти. При обработке таких данных, адрес данного меняется по правилу счета. Такая рекуррентная схема привела к появлению индексной адресации. В тех ЭВМ, где изменение указателя адреса при обработке данных делается автоматически, там индексация называется автодекрементной или автоинкрементной. Название лишь указывает направление изменения адреса (+1, -1). Данный способ адресации значительно упрощает программирование вычислительных циклов, хотя исторически, изменение исполнительного адреса, могло производиться за счет изменения текущего адресного кода в команде. Поскольку согласно принципу фон Неймана команды и данные в памяти не различаются друг от друга, то над кодом команды можно выполнять все те же операции, что и над данными, но изменение адресного кода команд приводит к тому, что программа становится неперемещаемой. Но модификацию адресного кода не применяют (проблемы с отладкой при сбое), хотя такая возможность есть. Ее можно использовать в тех программах, которые загружаются в фиксированную область памяти.
4. Укороченная адресация - всевозможные способы, ориентированные на уменьшение длины команды за счет сокращения адресного кода. Для современных ЭВМ укороченная адресация привела к тому, что базовые адреса, указатели косвенного адреса, указатели индексов при индексации хранятся либо в фиксированных ячейках памяти, либо в фиксированных регистрах процессора. В последнем случае в адресном поле команды задается короткий адрес регистра. Это позволяет не только сократить длину команды, но и уменьшить количество обращений к основной памяти, так как при упорядоченной адресации указатель извлекается из регистра, что гораздо быстрее. Дополнительное обращение к памяти исключается.
5. Стековая адресация. При использовании стековой адресации, команды не имеют адресного поля (безадресные) для задания адресов операндов. Стековая адресация -очень эффективный способ и применяется в большинстве ЭВМ. Стек может реализовываться либо аппаратными, либо программными средствами. Рассмотрим стек, реализованный программно-аппаратно. Стек - некоторая область памяти в общем пространстве, доступ к ячейкам этой области осуществляется с помощью указателя стека.
Sp - указатель стека либо указывает адрес загруженной команды, либо первой свободной ячейки. Доступ к данным в стеке, только по очереди, начиная в вершины. Помещение данных в стек - загрузка стека. Извлечение данных - разгрузка данных. Расположение данных в стеке строго упорядочено. В любой момент времени можно либо считать верхнее данное, либо загрузить поверх него другое. При каждом обращении к стеку, указатель стека автоматически корректируется на величину, равную длине данного. Данное, извлеченное из стека, как бы в стеке теряется. Для извлечения произвольного данного из стека необходимо предварительно удалить все вышележащие данные. Такой механизм не требует адресного поля в команде, команды фактически безадресные. Для обеспечения эффективной работы стека необходимо чтобы обрабатываемые данные были структурированные. Исторически стековая адресация использовалась при конструировании трансляторов. Преимущества стековой адресации:
1. Безадресные команды
2. Перемещаемость команд
Недостатки стековой адресации:
1. В адресном механизме аккумуляторный узел управления.
2. При использовании стека, как средства адресации команд, возникают сложности при реализации ветвлении
В современных ЭВМ стековый механизм является одним из основных при работе с подпрограммами, а также при организации прерываний.