- •41. Способы получения энергии у микроорганизмов
- •42. Роль микроорганизмов в круговороте углерода в природе
- •43. Типы дыхания микроорганизмов. Значение дыхания
- •44. Сравнение аэробного и анаэробного дыхания Аэробное дыхание как способ получения энергии микроорганизмами
- •1 Моль над•н2 эквивалентен 3 моль атф, следовательно при полном окислении 10 над•н2 х 3 атф образуется 30 атф;
- •Типы анаэробного дыхания (нитратное, сульфатное)
- •48. Молочнокислое брожение ( гомоферментативное): общее уравнение, химизм процесса , морфологическая и физиологическая характеристика возбудителей , значение и практическое использование
- •49. Гетероферметативное молочнокислое брожение : характеристика процесса и его возбудителей
- •50. Пропионовокислое брожение : химизм, возбудители, значение
- •51. Микробиологические процессы при силосовании кормов . Условия получения хорошего силоса
- •52. Участие микроорганизмов в круговороте азота в природе
- •53. Общая схема круговорота азота в природе.
- •Цикл азота
- •54. Аммонификация белков : динамика процесса , значение, морфологическая и физиологическая характеристика возбудителей
- •55. Нитрификация , её хемолитотрофная природа , возбудители, значение
- •60. Классификация азотфиксаторов
- •Характеристика азотфиксаторов.
- •61. Свободноживущие азотфиксаторы, их морфологическая и физиологическая характеристика, значение в природе
- •62. Симбиотическая азотфиксация у бобовых растений
- •63. Клубеньковые бактерии: морфологическая и физиологическая характеристика
- •64. Ассоциативная азотфиксация
- •65. Микробиологические процессы при хранении навоза
- •66.Микробиологические процессы, приводящие к потере азота из навоза
- •67. Бактериальные удобрения( приготовление, условия применения
- •68. Роль микроорганизмов в почвообразовательном процессе
- •69. Роль микроорганизмов в минеральном питании растений
- •70. Микрофлора молока и молочных продуктов
- •71. Микробиологические процессы при хранении молока
- •72. Инфекция . Динамика инфекционного процес
- •73. Что такое патогенность, вирулентность
- •74. Иммунитет . Виды иммунитета
- •75. Фагоцитоз. Его место в учении об иммунитете
- •76. Антигены. Их роль в создании иммунитета
- •77. Антитела. Их основные свойства.
- •78.Практическое использование учения об иммунитете
- •3. При учете пораженности в зависимости от вида растения, заболевания и стоящей перед селекционерами задачи определяют абсолютную или относительную устойчивость к болезни.
61. Свободноживущие азотфиксаторы, их морфологическая и физиологическая характеристика, значение в природе
На некоторых почвах даже без внесения азота в форме минеральных и органических удобрений получают высокие урожаи основных сельскохозяйственных культур. В связи с этим Костычев высказал мнение, что в почвах обитают бактерии, способные фиксировать атмосферный азот. Первыми были выделены бактерии рода Azotobacter. Сразу же после их открытия началось изучение их физиологии и географического распространения. Развитие Azotobacter в значительной степени зависит от содержания в почве органического вещества, реакции среды, наличия фосфора, калия и т. д. Органические вещества почвы служат источником энергии для развития азотобактера. Если почва богата органическим веществом, то численность азотобактера в ней высока. Как отмечал Кристенсен (1926), азотобактер встречается в основном в почвах с нейтральной реакцией. Существует тесная взаимосвязь между распространением азотобактера и содержанием калия в почве. Ваксман на основании многочисленных исследований доказал, что в большинстве случаев отсутствие азотобактера — это результат кислой реакций почвенной среды. Установлено, что в почвах Болгарии при наличии оптимальных условий азотобактер развивается при pH > 6. Более кислая почва является основным фактором, тормозящим развитие этой бактерии. Наличие фосфорной кислоты в почве абсолютно необходимо для развития азотобактера, поскольку фосфор стимулирует размножение бактерий и увеличивает их азотфиксирующую способность. Калий также является необходимым элементом для Azotobacter. Почвы Болгарии достаточно им обеспечены, что содействует развитию бактерий. В почвах азотобактер находится в различных, часто антагонистических взаимоотношениях с другими микроорганизмами. Антагонисты подавляют его развитие даже при благоприятных физических и химических свойствах почвы. На численность азотобактера в почве влияет растительный покров, т. е. азотобактер находится в специфических взаимоотношениях с растениями. По Костычеву, бактерии, расположенные непосредственно в зоне корневой системы, создают благоприятные условия для развития азотобактера. Красильников делит растения на три группы: стимулирующие, подавляющие и безразличные к азотобактеру. Степень фиксации азотобактером атмосферного азота зависит от количества и характера источника углерода, физико-химических свойств почвы, активности распространенных штаммов и других факторов. Подсчитано, что в результате жизнедеятельности азотобактера в почву в среднем за год поступает 30-50 кг/га усвояемого азота. В процессе жизнедеятельности, кроме фиксации азота, азотобактер способен выделять стимуляторы роста и антибиотики, улучшающие развитие растений и повышающие плодородие почв. Многие бактерии могут фиксировать азот даже в анаэробных условиях. Широкое распространение и большое значение имеют анаэробные бактерии рода Clostridium. Они развиваются почти во всех почвах и являются факультативными анаэробами. Из свободноживущих анаэробных азотфиксаторов наиболее широко в почвах Болгарии распространен Az. chroococcum. Данные о распространении азотобактера очень важны, поскольку позволяют определить количество азота, поступающего в почву за счет биологической азотфиксации. При большом количестве азота, поступающем в почву, следует уменьшить дозу вносимых азотных минеральных удобрений. Культивирование активных штаммов азотобактера позволило начать производство бактериального удобрения — азотогена, с успехом используемого во многих странах. В Болгарии изучается распространение в почвах страны азотобактера и G. pasteurianum. В возделываемых черноземах — высокая численность азотобактера, особенно в карбонатных типах почв, в типичных и выщелоченных черноземах она несколько снижается. Численность Az. chroococcum в черноземах существенно зависит от сезона и находится в отрицательной корреляции с количеством О. pasteurianum. В серых лесных почвах также происходят сезонные колебания численности азотфиксирующих бактерий. Количество Cl. pasteurianum в темно-серых лесных почвах примерно такое же, как и в черноземах, но снижается в серых и оподзоленных серых лесных почвах. Az. chroococcum широко распространен в луговых коричневых почвах, меньше — в выщелоченных коричневых и полностью отсутствует в псевдоподзолистых (оподзоленных) коричневых почвах. G. pasteurianum густо заселяет луговые коричневые почвы. Свободноживущие азотфиксаторы Az. chroococcum и Cl. pasteurianum широко распространены в почвах Болгарии. Их численность, а, следовательно, и количество азота, поставляемого в усвояемой форме, возрастают при улучшении условий развития микроорганизмов в почве. Средняя азотфиксирующая активность распространенных в стране штаммов азотобактера составляет 20 мг N/г глюкозы. В почвы, богато заселенные азотобактером, в результате азотфиксации ежегодно может поступать до 50 кг, а при слабом заселении — от 20 до 30 кг N/га. Эти цифры могут быть значительно выше, если учитывать площади, засеянные бобовыми культурами, стимулирующими развитие азотобактера. В Болгарии проводятся исследования по использованию нитрагина под различные культуры. Результаты опытов обнадеживающие
