
- •41. Способы получения энергии у микроорганизмов
- •42. Роль микроорганизмов в круговороте углерода в природе
- •43. Типы дыхания микроорганизмов. Значение дыхания
- •44. Сравнение аэробного и анаэробного дыхания Аэробное дыхание как способ получения энергии микроорганизмами
- •1 Моль над•н2 эквивалентен 3 моль атф, следовательно при полном окислении 10 над•н2 х 3 атф образуется 30 атф;
- •Типы анаэробного дыхания (нитратное, сульфатное)
- •48. Молочнокислое брожение ( гомоферментативное): общее уравнение, химизм процесса , морфологическая и физиологическая характеристика возбудителей , значение и практическое использование
- •49. Гетероферметативное молочнокислое брожение : характеристика процесса и его возбудителей
- •50. Пропионовокислое брожение : химизм, возбудители, значение
- •51. Микробиологические процессы при силосовании кормов . Условия получения хорошего силоса
- •52. Участие микроорганизмов в круговороте азота в природе
- •53. Общая схема круговорота азота в природе.
- •Цикл азота
- •54. Аммонификация белков : динамика процесса , значение, морфологическая и физиологическая характеристика возбудителей
- •55. Нитрификация , её хемолитотрофная природа , возбудители, значение
- •60. Классификация азотфиксаторов
- •Характеристика азотфиксаторов.
- •61. Свободноживущие азотфиксаторы, их морфологическая и физиологическая характеристика, значение в природе
- •62. Симбиотическая азотфиксация у бобовых растений
- •63. Клубеньковые бактерии: морфологическая и физиологическая характеристика
- •64. Ассоциативная азотфиксация
- •65. Микробиологические процессы при хранении навоза
- •66.Микробиологические процессы, приводящие к потере азота из навоза
- •67. Бактериальные удобрения( приготовление, условия применения
- •68. Роль микроорганизмов в почвообразовательном процессе
- •69. Роль микроорганизмов в минеральном питании растений
- •70. Микрофлора молока и молочных продуктов
- •71. Микробиологические процессы при хранении молока
- •72. Инфекция . Динамика инфекционного процес
- •73. Что такое патогенность, вирулентность
- •74. Иммунитет . Виды иммунитета
- •75. Фагоцитоз. Его место в учении об иммунитете
- •76. Антигены. Их роль в создании иммунитета
- •77. Антитела. Их основные свойства.
- •78.Практическое использование учения об иммунитете
- •3. При учете пораженности в зависимости от вида растения, заболевания и стоящей перед селекционерами задачи определяют абсолютную или относительную устойчивость к болезни.
41. Способы получения энергии у микроорганизмов
Способы получения энергии у бактерий
Способы же получения энергии у бактерий отличаются своеобразием. Существует три вида получения энергии (и все три известны у бактерий): брожение, дыхание и фотосинтез.
Брожение — серия окислительно-восстановительных реакций, в ходе которых образуются нестабильные молекулы, с которых остаток фосфорной кислоты переносится на АДФ с образованием АТФ (субстратное фосфорилирование). При этом возможно внутримолекулярное окисление и восстановление.
Дыхание — окисление восстановленных соединений с переносом электрона через локализованную в мембране дыхательную электронтранспортную цепь, создающую трансмембранный градиент протонов, при использовании которого синтезируется АТФ (окислительное фосфорилирование). В то время как эукариоты в конечном итоге почти всегда «сбрасывают» электрон на кислород (лишь в редких случаях акцептором электронов могут служить нитраты), бактерии могут использовать вместо него окисленные органические и минеральные соединения (фумарат, углекислый газ, сульфат-анион, нитрат-анион и др.; см.анаэробное дыхание), а вместо окисляемого органического субстрата использовать минеральный (водород, аммиак, сероводород и др.), что часто бывает сопряжено с автотрофной фиксацией CO2 (см. хемосинтез).
Фотосинтез бактерий может быть двух типов — бескислородный, с использованием бактериохлорофилла (зелёные, пурпурные и гелиобактерии) и кислородный с использованием хлорофилла (цианобактерии (хлорофилл a), прохлорофиты (a и b)). Цианобактерии,глаукоцистофитовые, красные и криптофитовые водоросли — единственные фотосинтезирующие организмы, содержащие фикобилипротеины. У архей встречается бесхлорофилльный фотосинтез с участием бактериородопсина (правда, энергия света используется при этом не для фиксации CO2, а непосредственно для синтеза АТФ, так что в строгом смысле это не фотосинтез, а фотофосфорилирование).
Бактерии, осуществляющие только бескислородный фотосинтез, не имеют фотосистемы II. Во-первых, это пурпурные и зелёные нитчатые бактерии, у которых функционирует только циклический путь переноса электронов, направленный на создание трансмембранного протонного градиента, за счёт которого синтезируется АТФ (фотофосфорилирование), а также восстанавливается НАД(Ф)+, использующийся для ассимиляции CO2. Во-вторых, это зелёные серные и гелиобактерии, имеющие и циклический, и нециклический транспорт электронов, что делает возможным прямое восстановление НАД(Ф)+. В качестве донора электрона, заполняющего «вакансию» в молекуле пигмента в бескислородном фотосинтезе используются восстановленные соединения серы (молекулярная, сероводород, сульфит) или молекулярный водород.
Существуют также бактерии с весьма специфическим энергетическим метаболизмом. Так, в октябре 2008 года в журнале Science появилось сообщение[2] об обнаружении экосистемы, состоящей из представителей одного единственного ранее неизвестного вида бактерии —Desulforudis audaxviator, которые получают энергию для своей жизнедеятельности из химических реакций с участием водорода, образующегося в результате распада молекул воды под воздействием радиации залегающих вблизи нахождения колонии бактерий урановых руд[3]. Некоторые колонии бактерий, обитающие на дне океана, используют для передачи энергии своим собратьям электрический ток