
- •Основные этапы в истории развития микробиологии
- •Открытия Луи Пастернака и Роберта Коха
- •Значение работ с. И. Виноградского и в.Л. Омелянского для развития микробиологии.
- •Открытия д.И. Ивановского и и.И. Мечникова
- •Особенности строения бактериальной клетки
- •Общая схема бактериальной клетки
- •11. Отличия в строении клеток эукариот и прокариот
- •12. Значение спорообразования для бактерий и грибов
- •13. Размножение бактерий
- •14. Актиномицеты : строение, свойства, значение ,распространение в природе.
- •15. Микроскопические грибы: отличительные признаки, способы размножения , классификация , условия жизни и значение
- •16. Характеристика низших грибов и отделы , относящиеся к ним
- •17. Характеристика высших грибов и отделы , относящиеся к ним
- •18. Аскомицеты : характеристика отдельных представителей
- •19. Дейтеромицеты ( несовершенные грибы): характеристика отдельных представителей.
- •20. Дрожжи : морфологические и физиологические особенности, элективные условия для выращивания Жизненные формы дрожжей
- •23. Механизм взаимодействия вируса с клеткой
- •24.Бактериофаги: строение, химический состав, значение
- •26.Влияние влажности, температуры и реакции среды на рост и развитие микроорганизмов
- •27. Влияние света и кислорода на рост и развитие микроорганизмов
- •28. Действие химических веществ на микроорганизмы
- •29. Химический состав микробной клетки
- •30. Особенности питания микроорганизмов.
- •31. Поступление питательных веществ в микробную клетку, типы транспортных систем.
- •32. Физиологическая роль азота и источники азота для микроорганизмов
- •33.Физиологическая роль фосфора и серы
- •34. Физиологическая роль калия и кальция
- •Кальций. Внутриклеточный и в костной ткани
- •35. Физиологическая роль магния и железа Магний. Внутриклеточный и в костной ткани
- •36. Ферменты участвующие в обмене веществ микроорганизмов
- •37. Типы питания микроорганизмов
- •38. Характеристика автотрофного и гетеротрофного типов питания
- •39. Фотоавтотрофы. Фотосинтез у бактерий
- •40. Хемоавтотрофы. Хемосинтез у бактерий
- •Основы хемосинтеза
Открытия д.И. Ивановского и и.И. Мечникова
С именем И. Мечникова (1845-1916) связано развитие нового направления в микробиологии - иммунологии. Впервые в науке Мечниковым была разработана и экспериментально подтверждена биологическая теория иммунитета, вошедшая в историю как фагоцитарная теория Мечникова. В основу этой теории положено представление о клеточных защитных приспособлениях организма. Мечников в опытах на животных (дафниях, личинках морской звезды) доказал, что лейкоциты и другие клетки мезодермального происхождения обладают способностью захватывать и переваривать чужеродные частицы (в т.ч. и микробов), попадающие в организм. Это явление, названное фагоцитозом, легло в основу фагоцитарной теории иммунитета и получило всеобщее признание. Развивая далее поднятые вопросы, Мечников сформулировал общую теорию воспаления как защитную реакцию организма и создал новое направление в иммунологии - учение об антигенной специфичности. В настоящее время оно приобретает все большее значение в связи с разработкой проблемы пересадки органов и тканей, изучения иммунологии рака.
К числу важнейших работ Мечникова в области медицинской микробиологии относятся исследования патогенеза холеры и биологии холероподобных вибрионов, сифилиса, туберкулеза, возвратного тифа. Мечников является основоположником учения о микробном антагонизме, послужившем основой для развития науки об антибиотикотерапии. Идея о микробном антагонизме была использована Мечниковым при разработке проблемы долголетия. Изучая явление старения организма, Мечников пришел к заключению. Что важнейшей причиной его является хроническое отравление организма продуктами гниения, вырабатываемыми в толстом кишечнике гнилостными бактериями.
Практический интерес представляют ранние работы Мечникова по использованию гриба Isaria destructor для борьбы с вредителем полей - хлебным жуком. Они дают основание считать Мечникова основоположником биологического метода борьбы с вредителями сельскохозяйственных растений, метода, который в наши дни находит все более широкое применение и популярность.
Таким образом, И.И. Мечников - выдающийся русский биолог, сочетавший качества экспериментатора, педагога и пропагандиста научных знаний, - был человеком великого духа и труда, высшей наградой которого явилось присвоение ему в 1909 г. Нобелевской премии за исследования по фагоцитозу.
Большой вклад в развитие отечественной и мировой микробиологии внес Д.И. Ивановский (1864-1920), открывший в 1892 г. вирусы растений и тем самым заложивши основу новой науки - вирусологии. Подчеркивая важность исследования Ивановского, английский вирусолог Н. Пири писал: «Огромное значение открытия Ивановского для теоретического естествознания заключается в том, что им была открыта новая форма существования белковых тел». Идеи Ивановского сыграли решающую роль в последующих блестящих успехах вирусологии, в результате которых были открыты возбудители большинства вирусных болезней человека, животных, растений и микроорганизмов. По заключению американского вирусолога Стенли, имя Ивановского в вирусологии следует рассматривать в том же свете, как имена Пастера и Коха в микробиологии.
Питательные среды для выращивания микробов : классификация питательных сред , их приготовление и требования , предъявляемые к питательным средам .
Стерилизация, пастеризация , дезинфекция
Основные методы стерилизации ( термические и холодные
Почти все факторы физического воздействия на микроорганизмы могут быть использованы с целью стерилизации. Под стерилизацией понимают обеспложивание, освобождение материалов, растворов, питательных сред от вегетативных и покоящихся форм микроорганизмов. Стерильность - понятие абсолютное, оно означает полное отсутствие микроорганизмов, как на поверхности, так и внутри стерильного объекта. В практике широко используют несколько способов стерилизации: термическая (под действие высоких температур) и холодная (с помощью ультразвука, излучения, фильтрации). Гибель клеток бактерий, грибов, дрожжей и вирусных частиц при стерилизации высокой температурой происходит либо в результате сгорания клеток, либо в результате коагуляции белковых структур микроорганизмов. Различают следующие способы тепловой стерилизации:
Прокаливание - это самый старый и надежный способ стерилизации. В пламени горелки прокаливают бактериологические петли, препаровальные иглы, кончики пинцетов и ножниц, предметные стекла. При этом бактерии, грибы и их споры сгорают.
Кипячение - для стерилизации металлических инструментов, стеклянных изделий, резиновых трубок, пробок используют кипящую воду. При 100 ° С (температура кипящей воды) вегетативные формы микроорганизмов и большинство вирусов погибают быстро, в течение нескольких минут. Споры (бациллы сибирской язвы, ботулизма) выдерживают кипячение в течение нескольких часов, вирусы гепатита В - около часа. Стерилизацию осуществляют в специальных металлических сосудах - стерилизаторах, которые могут быть снабжены электронагревом. Существует большое количество типов стерилизаторов, отличающихся по объему и устройству.
Стерилизация сухим жаром - Для стеклянной посуды чаще всего используют стерилизацию сухим жаром. Ее проводят в специальных суховоздушных (сухожарочных) шкафах, имеющих датчики - регуляторы температуры. Режимы стерилизации включают температуру и время. Наиболее часто используют следующие режимы стерилизации сухим жаром:
Температура, ° С |
Время, мин |
140 |
180 |
150 |
150 |
160 |
120 |
170 |
60 |
При таких режимах погибают как вегетативные формы, так и споры микроорганизмов.
Автоклавирование - стерилизация насыщенным паром под давлением. Проводится при температуре выше точки кипения воды. Это наиболее надежный и распространенный способ стерилизации. Особая эффективность этого способа достигается при совместном действии пара и высокой температуры. Стерилизацию паром под давлением осуществляют в специальных герметически закрывающихся аппаратах с толстыми стенками - автоклавах. Автоклав состоит из стерилизационной камеры, снабженной краном для выхода воздуха, манометром для измерения давления пара, предохранительным клапаном для выхода пара при повышении давления выше необходимого, термометра для измерения температуры внутри камеры. Имеется паровой котел с нагревателем воды. При кипячении воды пар поступает в камеру автоклава. Автоклав герметически закрывают крышкой или дверью с плотной резиновой прокладкой. Автоклавирование проводит специально подготовленный специалист, так как работа по обслуживанию аппарата, работающего под давлением требует подготовки и строгого соблюдения правил техники безопасности. Режим автоклавирования выражают в единицах избыточного давления и продолжительности времени. Избыточное давление в 1 атм устанавливается при достижении температуры в камере 121 °C, 1,5 атм - 125 °C, 2,0 атм - 134 °C. При таких режимах автоклавирования вегетативные формы микроорганизмов погибают в течение нескольких минут, а споры в течение 20-30 мин. Режим стерилизации выбирают в зависимости от свой ств ст ерилизуемого материала. Так, питательные среды стерилизуют 20-30 мин при 1 атм, перевязочный материал и резиновые изделия от 1 до 2 часов при 1,0-1,5 атм. Для контроля режима стерилизации используют вещества с определенной температурой плавления. Их смешивают с метиленовой синью, помещают в ампулы или небольшие флаконы и раскладывают в автоклаве перед началом автоклавирования. К таким контролирующим веществам относятся бензаурин, температура плавления 115 °C, соответствует - 0,5 атм ; бензойная кислота, температура плавления 121 °C, соответствует - 1,0 атм ; мочевина, температура плавления 132 °C, соответствует - 2,0 атм ; глюкоза, температура плавления 146 °C; тиомочевина, температура плавления 180 °C. Эти вещества расплавляются при достижении в сосуде соответствующей температуры и окрашиваются в цвет добавленного красителя.
Стерилизации текучим паром подвергаются те растворы и питательные среды, которые разрушаются при стерилизации под давлением. Такую стерилизацию проводят также в автоклавах при избыточном нулевом давлении и температуре 100 °C. Применяют «дробную стерилизацию» - трех- или четырехкратную обработку с интервалом в 1 сутки, во время которого не успевшие погибнуть споры бактерий прорастают в вегетативные формы и погибают от действия пара и температур.
Пастеризация предусматривает уничтожение в материале только вегетативных форм микроорганизмов и применяется в пищевой промышленности. При этом используют кратковременное нагревание до 90-92 °С в течение 2-5 сек или более длительное - в течение 5-10 мин нагревание до 70-75 °С. Обработанные таким образом материалы считаются пастеризованными, но не стерильными, так как содержат споры.
Холодная стерилизация осуществляется в отношении материалов, сред и растворов, которые изменяют свойства при тепловой стерилизации. Стерилизация фильтрованием показана для синтетических сред определенного состава, содержащих термолабильные аминокислоты, витамины, белки, для антибиотиков, ароматических углеводородов. Фильтрование проводится через мелкопористые материалы, которые адсорбируют клетки микроорганизмов: каолин, асбест, фарфор и др. Диски, изготовленные из асбеста с целлюлозой называют фильтрами Зейтца. Их помещают в специальный фильтродержатель и стерилизуют в автоклаве, а затем, смонтировав держатель с колбой или бутылью, под давлением пропускают стерилизуемый раствор. Широкое применение нашли мембранные фильтры. Их изготавливают из специально обработанной нитроцеллюлозы. Фильтры имеют поры размером от 0,22 до 100 мм. В фильтродержатели монтируют фильтры с разной величиной пор, от больших к меньшим и при фильтрации растворов постепенно «отсеивают» микроорганизмы различных размеров. Наиболее широко известны фильтрующие пластины фирм « Миллипор », « Синпор », « Владипор ». После стерилизующей фильтрации среды и растворы обязательно проверяют на стерильность, помещая микропробы простерилизованных растворов в термостат при температуре 37 ° С.
Формы бактерий и их размеры . Движение бактерий
Размеры, форма бактерий
Существуют три основные формы бактерий – шаровидная, палочковидная и спиралевидная, большая группа нитчатых бактерий объединяет преимущественно водные бактерии и не содержит патогенных видов.
Шаровидные бактерии – кокки, подразделяются в зависимости от положения клеток после деления на несколько групп:
1) диплококки (делятся в одной плоскости и располагаются парами); 2) стрептококки (делятся в одной плоскости, но при делении не отделяются друг от друга и образуют цепочки); 3) тетракокки (делятся в двух взаимно перпендикулярных плоскостях, образуя группы по четыре особи); 4) саруины (делятся в трех взаимно перпендикулярных плоскостях, образуя группы кубической формы); 5) стафилококки (делятся в нескольких плоскостях без определенной системы, образуя скопления, напоминающие виноградные грозди). Средний размер кокков 1,5-1мкм.
Палочковидные бактерии имеют строго цилиндрическую или овоидную форму, концы палочек могут быть ровными, закругленными, заостренными. Палочки могут располагаться попарно в виде цепочек, но большинство видов располагается без определенной системы. Длина палочек варьирует от 1 до 8 мкм.
Спиралевидные формы бактерий подразделяют на виброны и спириллы. Изогнутость тел вибронов не превышает одной четверти оборота спирали. Спириллы образуют изгибы из одного или нескольких оборотов.
Некоторые бактерии обладают подвижность, что отчетливо видно при наблюдении методом висячей капли или другими методами. Подвижные бактерии активно передвигаются с помощью особых органелл – жгутиков либо за счет скользящих движений.
Капсула имеется у ряда бактерий и является из внешним структурным компонентом. У ряда бактерий аналогом капсуле имеется образование в виде тонкого слизистого слоя на поверхности клетки. У некоторых бактерий капсула формируется в зависимости от условий их существования. Одни бактерии образуют капсулы только в микроорганизме, другие как в организме, так и вне его, в частности на питательных средах, содержащих повышенные концентрации углеводов. Некоторые бактерии образуют капсулы независимо от условий существования. В состав капсулы большинства бактерий полимиризованные полисахариды, состоящие из пентоз и аминосахаров, урановые кислоты, полипептиды и белки. Капсула не является аморфным образованием, а определенным образом структурирована. У некоторых белков, например, пневмококков, определяет их вирулентность, а также некоторые антигенные свойства бактериальной клетки.