- •Основные этапы в истории развития микробиологии
- •Открытия Луи Пастернака и Роберта Коха
- •Значение работ с. И. Виноградского и в.Л. Омелянского для развития микробиологии.
- •Открытия д.И. Ивановского и и.И. Мечникова
- •Особенности строения бактериальной клетки
- •Общая схема бактериальной клетки
- •11. Отличия в строении клеток эукариот и прокариот
- •12. Значение спорообразования для бактерий и грибов
- •13. Размножение бактерий
- •14. Актиномицеты : строение, свойства, значение ,распространение в природе.
- •15. Микроскопические грибы: отличительные признаки, способы размножения , классификация , условия жизни и значение
- •16. Характеристика низших грибов и отделы , относящиеся к ним
- •17. Характеристика высших грибов и отделы , относящиеся к ним
- •18. Аскомицеты : характеристика отдельных представителей
- •19. Дейтеромицеты ( несовершенные грибы): характеристика отдельных представителей.
- •20. Дрожжи : морфологические и физиологические особенности, элективные условия для выращивания Жизненные формы дрожжей
- •23. Механизм взаимодействия вируса с клеткой
- •24.Бактериофаги: строение, химический состав, значение
- •26.Влияние влажности, температуры и реакции среды на рост и развитие микроорганизмов
- •27. Влияние света и кислорода на рост и развитие микроорганизмов
- •28. Действие химических веществ на микроорганизмы
- •29. Химический состав микробной клетки
- •30. Особенности питания микроорганизмов.
- •31. Поступление питательных веществ в микробную клетку, типы транспортных систем.
- •32. Физиологическая роль азота и источники азота для микроорганизмов
- •33.Физиологическая роль фосфора и серы
- •34. Физиологическая роль калия и кальция
- •Кальций. Внутриклеточный и в костной ткани
- •35. Физиологическая роль магния и железа Магний. Внутриклеточный и в костной ткани
- •36. Ферменты участвующие в обмене веществ микроорганизмов
- •37. Типы питания микроорганизмов
- •38. Характеристика автотрофного и гетеротрофного типов питания
- •39. Фотоавтотрофы. Фотосинтез у бактерий
- •40. Хемоавтотрофы. Хемосинтез у бактерий
- •Основы хемосинтеза
19. Дейтеромицеты ( несовершенные грибы): характеристика отдельных представителей.
Дейтеромицеты (лат. Deuteromycota), илиНесовершенные грибы (лат. Fungi imperfecti) — нетаксономическая группа грибов, ранее считавшаяся отделом. Их тело состоит из расчленённых прозрачных или окрашенных многоклеточных гиф (нитевидное образование у грибов, состоящее из многих клеток или содержащее множество ядер.)и иногда из почкующихся клеток. Размножаются исключительно бесполым путём, при котором образование конидий(иногда неточно называемые конидиоспорами, — неподвижные споры бесполого размножения у грибов. Также известны как митоспоры, поскольку образуются в результате митоза. Они являются гаплоидными клетками, генетически идентичными гаплоидным родительским. При благоприятных условиях развиваются в новый организм и способствуют распространению, то есть служат как для размножения, так и для расселения.
От обычных спор конидии отличаются тем, что образуются не в спорангиях, а открыто — на выростах мицелия.
) происходит на изолированных или расположенных группами конидиеносцах или специальных образованиях, называемых пикнидами.
К дейтеромицетам относятся три порядка:Sphaeropsidales, Melanconiales и Hyphomycetales(Moniliales), представители которых широко распространены в почве.
Грибы порядка Sphaeropsidales характеризуются конидиями, которые образуются в пикнидах, остающихся закрытыми или открывающихся наружу порами или трещинами. Сюда входит род Phoma и др. Виды рода Phoma образуют микоризу с корнями некоторых растений.
В порядок Melanconiales входят организмы, которые не имеют пикнид. Конидии расположены на конидиеносцах, соединённых в особые образования — ацервулы.
Грибы порядка Hyphomycetales имеют расчленённые, разветвлённые, прозрачные или тёмно-окрашенные гифы. Их весьма разнообразные конидии находятся на конидиеносцах, последние расположены по одному или группами.
В почве имеются многие представители данного порядка — Cephalosporium, Trichoderma,Cladosporium, Alternaria, Fusarium и др. Несовершенные грибы подразделяются на семейства, различающиеся между собой типом мицелия и формой конидиеносцев.
К несовершенным грибам относят и группу грибов с неустановленным способом полового и бесполого размножения (порядок Mycelia sterilia — грибы со стерильным мицелием). Сюда входит ряд грибов (Sclerotium, Rhizoctonia и др.), имеющих значение в почвенных процессах.
20. Дрожжи : морфологические и физиологические особенности, элективные условия для выращивания Жизненные формы дрожжей
Специализация на выполнении неодинаковых функций приводит у разных групп дрожжевых грибов к формированию характерного комплекса морфологических и физиологических свойств. Это дает возможность говорить о различных жизненных формах дрожжей. В общей экологии термином «жизненная форма» обозначается внешний облик, определенный морфологический тип организма, сформировавшиеся в результате приспособления к определенной среде обитания. Как уже отмечалось, дрожжи в современном понимании представляют собой определенную жизненную форму грибов. У микроорганизмов приспособления носят в основном физиологический характер, и при выделении таких экологических групп необходимо учитывать физиологические характеристики, поэтому правильнее говорить не о жизненных формах, а о морфо-физиологических группах. Среди дрожжей можно выделять следующие жизненные формы:
· Сахаробионты - «настоящие» дрожжи, наиболее типичным представителем которых является Saccharomyces cerevisiae. Они обладают комплексом свойств, свидетельствующим об их приспособленности к существованию в средах, обогащенных легкодоступными источниками углерода. Отсутствие пигментации, развитых мицелиальных структур, хламидоспор, слизистых капсул, а также способность к более или менее интенсивному брожению и узкий спектр усваиваемых соединений углерода - характерный набор свойств этих дрожжей. Кроме сахаромицетов к сахаробионтам следует относить представителей родов Debaryomyces, Kluyveromyces, Torulaspora, Zygosaccharomyces, а также большинство видов из родов Pichia и Candida.
· Фитобионты - адаптированы к обитанию на поверхности живых частей растений и, как правило, образуют каротиноидные пигменты. Они часто имеют в цикле развития хламидоспоры или хламидоспороподобные клетки, устойчивые к высушиванию. Характерный признак многих видов - образование баллистоспор, рассеивающихся токами воздуха. Наиболее типичные представители фитобионтов - роды Sporobolomyces и Sporidiobolus, некоторые виды родов Rhodotorula и Cryptococcus.
· Сапробионты обладают относительно высокой гидролитической активностью и принимают участие в деструкции растительных остатков на средних и поздних стадиях. К типичным сапробионтам относятся некоторые виды рода Trichosporon, Cystofilobasidium capitatum, группа несовершенных видов базидиомицетового аффинитета, классифицируемых в роде Cryptococcus (Cryptococcus podzolicus, Cryptococcus humicolus).
· Педобионты - дрожжи, наиболее приспособленные к обитанию на твердых поверхностях почвенных частиц. Они обладают слизистыми капсулами, которые создают межклеточную среду, сохраняющую благоприятный режим влагообмена и питания в условиях временного иссушения почвы. Эти дрожжи способны накапливать большое количество запасных веществ, главным образом в форме липидов, которые обеспечивают переживание длительных периодов голодания. Для них также характерна способность к усвоению соединений азота в очень низкой концентрации. Типичные представители педобионтов - все виды липомицетов. По-видимому, к педобионтам можно также отнести некоторые виды криптококков, в частности Cryptococcus terreus, Cryptococcus aerius, Cryptococcus terricola.
акроморфологические признаки очень изменчивы и сильно зависят от состава среды и условий культивирования, поэтому они имеют весьма ограниченное значение в систематике дрожжей. . Дрожжевые культуры, растущие на плотных средах, по консистенции бывают чаще всего пастообразными, а также слизистыми, иногда полностью стекающими на дно пробирки, вязкими, клейкими, кожистыми или крошащимися. Слизистый рост характерен для многих анаморфных базидиомицетовых дрожжей родов Cryptococcus (см. приложение 4), Rhodotorula (см. приложение 5), Sporobolomyces, образующих большое количество внеклеточных полисахаридов, а также для аскомицетовых почвенных дрожжей рода Lipomyces (см. приложение 6). У большинства аскомицетовых дрожжей колонии пастообразные, сухие, культура при росте на скошенном агаре не стекает на дно пробирки. Для дрожжеподобных грибов, образующих как одиночные клетки, так и мицелий, характерны колонии с ворсинчатым краем, который хорошо просматривается при просвечивании. У большинства дрожжей колонии белые, часто приобретающие при старении кремовый или слегка коричневатый оттенок. У некоторых аскоспоровых дрожжей, например из рода Lipomyces, старые колонии при обильном спорообразовании темнеют и становятся бурыми или шоколадными. Многие дрожжи образуют пигменты, окрашивающие их колонии в различные цвета. Наличие каротиноидных пигментов, придающих колониям красную, розовую, оранжевую или желтую окраску, характерно для базидиомицетовых дрожжей родов Rhodotorula, Sporobolomyces и др. Аскомицетовые дрожжи Metschnikowia pulcherrima образуют диффундирующий в среду красно-вишневый пигмент пульхерримин. Так называемые «черные дрожжи», формируют темно бурые или черные колонии за счет накопления меланоидных пигментов. Микроморфология дрожжей включает признаки, характеризующие отдельные клетки (форма, размеры), а также способы вегетативного и бесполого размножения и образуемые при этом структуры.. Морфогенез дрожжевой клетки тесно связан со способом вегетативного размножения. Различают два принципиально различных способа образования вегетативных клеток у дрожжей - артрический (талломный) и бластический (зародышевый). При артрическом способе мицелий дрожжеподобных грибов одновременно распадается на отдельные одноклеточные элементы - артроспоры. Они образуются за счет расчленения гифы по поперечным септам после разрушения первичной стенки гифы в местах сочленения. Такой способ вегетативного размножения характерен для дрожжеподобных грибов Endomyces, Galactomyces, Arxula, Trichosporon, причем у двух последних родов образование артроспор сопряжено с их последующим почкованием. Бластический тип вегетативного размножения - это образование почек, что наиболее характерно для дрожжей. Почка представляет собой вырост на материнской клетке, который по мере увеличения в размерах отшнуровывается от нее. На материнской клетке при этом остается шрам почкования, а на отделившейся почке - шрам рождения. Шрамы почкования, или почечные рубцы, сохраняются на материнской клетке весь период ее жизни, а шрамы рождения со временем становятся малозаметными. Форма дрожжевых клеток довольно разнообразна (см. приложение 7) и этот признак тесно связан со способом почкования. У видов, размножающихся многосторонним почкованием, клетки имеют сферическую, округлую, овальную или яйцевидную форму. При биполярном почковании клетки приобретают апикулятную (лимоновидную) или грушевидную форму. У делящихся дрожжей клетки более или менее цилиндрические. Специфическую угловатую форму имеют клетки дрожжей рода Trigonopsis, серповидную - Metschnikowia lunata. Клетки дрожжей, образующие почки на стеригмах, зачастую приобретают форму, делающую их похожими на простекобактерии. У многих видов дрожжей в определенных условиях роста материнские и дочерние клетки после почкования не разъединяются, а продолжают почковаться. В результате возникают структуры, имитирующие мицелий. Такой мицелий называют ложным, или псевдомицелием (см. приложение 8). В отличие от истинного (септированного) мицелия, в нитях псевдомицелия между клетками обычно хорошо заметны перетяжки, а апикальные (концевые) клетки всегда короче предшествующих. Псевдомицелий, состоящий только из клеток одного типа, сходных по форме и размерам, называют примитивным (рудиментарным). Сложный псевдомицелий состоит из клеток более чем одного типа, обычно в нем резко различаются длинные клетки, составляющие псевдогифы, и расположенные на них одиночные или собранные гроздьями круглые, овальные или клиновидные почки, которые в этом случае называются бластоспорами (см. приложение 9). Образование псевдомицелия характерно для многих аскомицетовых дрожжей, например из родов Candida, Pichia.
Питательной среды, условий культивирования дрожжей и их физиологических особенностей. Средний элементарный состав дрожжевых клеток (в %): углерод 47, водород 6,5, кислород 31, азот 7,5—10, фосфор 1,6—3,5. Содержание других элементов незначительно: кальция 0,3—0,8%, калия 1,5—2,5, магния 0,1—0,4, натрия 0,06—0,2, серы 0,2%. В дрожжах найдены микроэлементы (в мг/кг): железо 90—350, медь 20—135, цинк 100—160, молибден 15—65.
Дрожжи в отпрессованном виде содержат 68—76% воды и 32 — 24% сухого вещества. Внутриклеточной влаги в зависимости от со стояния коллоидов дрожжевой клетки содержится 46—53% и межклеточной 22-27%. При изменении общей влажности дрожжей меняется соотношение между количеством внутриклеточной и межклеточной влаги. Удаление 85% воды из дрожжей при температуре не выше 50°С почти не влияет на их жизнеспособность.
Сухие вещества дрожжей включают 23—28% органических веществ и 5—7% золы. Органические вещества состоят из 13—14% белка, 6—8% гликогена, 1,8—2% целлюлозы и 0,5—2% жира.
Белок. Дрожжи содержат в среднем 50% «сырого» белка в пересчете на сухие вещества и около 45% истинного белка. В состав сырого белка входят все соединения азота, к которым относятся производные нуклеиновых кислот — пуриновые и пиримидиновые основания, азот свободных аминокислот.
Гликоген. При отсутствии питательных веществ в среде гликоген дрожжевой клетки превращается в спирт и диоксид углерода.
Трегалоза. Наряду с гликогеном содержится трегалоза — очень мобильный резервный углевод, обусловливающий стойкость хлебопекарных дрожжей. Содержание трегалозы возрастает с уменьшением азота и при рН ниже 4,5.
Жир. В состав жира входят в основном олеиновая, линолиновая и пальмитиновая кислоты. Он содержит 30—40% фосфатидов.
Зола. Зола состоит из следующих основных окислов (в %): Р2О5 — 25—60, К2О — 23—40, СаО — 1—8, МgО — 4—6, Nа2О — 0,5—2, SО3 — 0,5—6, 5Ю2 — 1—2, Ре2О3 — 0,05—0,7.
Фосфор. Фосфор содержится преимущественно в виде органических и неорганических орто-, пиро- и метафосфатов. Они входят в состав молекул нуклеиновых кислот, фосфолипидов и коферментов типа аденозинфосфата и тиамина. Так, ядерное вещество клетки (нуклеопротеиды) содержит фосфор в видеортофосфата. В виде ортофосфата фосфор входит также в состав флавиновых ферментов; в виде пирофосфата — во многие коферменты (кодегидразы Кох и Коц, карбоксилазы), В виде различных соединений фосфор принимает важное участие в энергетических процессах клетки.
Сера. Сера входит в состав очень важных соединений — аминокислот (цистеин, цистин, метионин и глютатион) и витаминов (биотин, аневрин). В ферментах сера находится в виде сульфидных и тиоловых групп.
Железо. Железо содержится в цитохромах, цитохром-оксидазе, пероксидазе, каталазе и других ферментах, участвующих в процессе дыхания. Оно участвует в работе других ферментов (зимогеназа, пирофосфатаза).
Магний. Магний активирует действие многих фосфатаз и энолазы. Ионы магния влияют на сохранение активности ферментов при нагревании. Магний и марганец ускоряют потребление дрожжами глюкозы. Влияние магния тем сильнее, чем ниже концентрация глюкозы в среде. Питательные среды должны содержать 0,02-0,05% магния в виде сульфата. Процессы брожения регулируются изменением концентрации ионов магния в результате присоединения его к органическим веществам. Калий. Калий необходим не только как питательный элемент, но и как стимулятор размножения дрожжей. Стимулирующее действие объясняется его существенной ролью в окислительном фосфорилпровании и в процессах гликолиза. Движение неорганического фосфора внутрь клетки специфично стимулируется калием. Калий активирует дрожжевую альдолазу, необходим для действия фермента пируваткарбоксилазы и влияет, так же как азот и сера, на липидный обмен дрожжевых клеток.
Кальций. Кальций играет роль активатора в микробной клетке и обнаруживается в ней как в свободной форме, так и в связанной с протеинами, углеводами и липидами. Ионы Са2+ могут связываться с АТФ наряду с Мg2+ и Мn2+. Кальций является кофактором транскетолазы хлебопекарных дрожжей и ингибитором некоторых ферментов, например пирофосфатазы, энолазы и адено-зинтрифосфатазы. Повышенное содержание солей кальция угнетает размножение дрожжей, снижает накопление в них гликогена и повышает содержание стеринов. Так, при содержании Са2+ до 40 мг на 1 л среды стимулируется размножение дрожжей, при большем оно угнетается.
Микроэлементы. Микроэлементы также имеют важное значение для размножения и жизнедеятельности дрожжей, входя в состав ферментов, витаминов и других соединений, участвующих в их синтезе. Они влияют на скорость и характер различных биохимических процессов. Например, кобальт стимулирует размножение дрожжей, повышает содержание в клетках азотистых веществ небелковой природы, прежде всего ДНК, РНК и свободных аминокислот. Он стимулирует также синтез витаминов — рибофлавина и аскорбиновой кислоты. Стимулирующее действие микроэлементов объясняется тем, что они образуют с ферментами металлорганические и внутрикомплексные соединения. Получаемый эффект зависит от прочности связи фермента с молекулой субстрата или активации субстрата в промежуточном активном комплексе.
Витамины и другие факторы роста дрожжей. Для нормального развития и спиртового брожения дрожжи нуждаются в витаминах, которые являются кофакторами многих ферментов. Дрожжи (сахаромицеты) в большей или меньшей мере могут синтезировать все витамины, за исключением биотина, который должен обязательно содержаться в питательной среде.
Ненасыщенные жирные кислоты с 18 атомами углерода, особенно олеиновая, также являются важными ростовыми факторами. Стимулирующее влияние олеиновой кислоты наблюдается только при малой ее концентрации, не превышающей 0,5 мг/мл. При увеличении концентрации рост дрожжей намного замедляется.
21.Вирусы : химический состав, строение, формы, значение
22. Отличие вирусов от бактерий.
Вирус необычно прост, если его сопоставить с клеткой. Сравним объем генетической информации, содержащейся в вирусе полиомиелита, с объемом генетической информации, содержащейся в клетке млекопитающего, а чтобы упростить расчеты, будем считать, что объем информации пропорционален молекулярной массе или просто массе нуклеиновой кислоты, то есть генома соответственно вируса или клетки. Масса генома вируса 5 • 10-15 миллиграмма. Масса генома клетки 5 • 10-9 миллиграмма. Это означает, что среднего размера вирус содержит лишь одну миллионную долю генетической информации, которую вмещает клетка. А ведь вирус полиомиелита не самый мелкий в царстве вирусов, есть и поменьше! Как это ни странно, при встрече столь примитивного существа, как вирус, со столь сложной системой, как клетка, победа нередко остается за вирусом. Но вирус совсем не прост, если сравнить его с рядом полимеров. Молекулярная масса генома наиболее мелких вирусов не превышает одного миллиона. Можно назвать немало искусственных полимеров с большей молекулярной массой. Однако все эти синтетические полимеры, несмотря на громадные (относительно!) размеры, — мертвая материя, тогда как в молекуле вирусной нуклеиновой кислоты— даже в самой мелкой — заложена информация, как надо жить и воспроизводить себе подобных. При таком сравнении вирус — или даже его генетический аппарат — представляется необычайно сложным по сравнению с самыми сложными и гигантскими химическими молекулами и надмолекулярными образованиями — полимерами. Из чего состоят и как устроены вирусы? Наиболее простые из них состоят из двух биологических полимеров — нуклеиновых кислот и белков. Нуклеиновая кислота, является генетическим веществом - геномом вируса. Нуклеиновая кислота представляет собой линейный полимер, состоящий из чередующихся остатков более простых соединений — нуклеотидов. В свою очередь, иуклеотиды являются соединением остатков фосфорной кислоты, углевода и одного из четырех оснований. В состав нуклеотида может входить один из двух углеводов — рибоза или дезоксирибоза, и в зависимости от этого существуют два типа нуклеиновых кислот: рибонуклеиновая кислота (РНК) и дезоксирибонуклеиновая кислота (ДНК), В состав рибонуклеиновой кислоты входят основания: гуанин, аденин, цитозин и урацил; в дезоксирибонуклеиновую кислоту вместо урацила входит гимин. Важная особенность нуклеиновых кислот — комплементарность (взаимная дополнительность) их оснований. Это зависит от того, что при определенной ориептации в пространстве основания взаимодействуют между собой слабыми химическими (так называемыми водородными) связями. При этом аденин всегда взаимодейству от только с урацилом или хинином, а гуанин — с цитозином, как это показано на схеме. Генетический аппарат вирусов представлен всеми возможными формами нуклеиновых кислот: однонитчатой и двухнитчатой РНК, однонитчатой и двухнитчатой ДНК, причем последняя может быть линейной или циркулярной. Такого разнообразия не знают другие формы жизни — растения или животные: их генетический аппарат всегда состоит из двухнитчатой ДНК, а рибонуклеиновой кислоте отведена роль источника и переносчика информации, и она всегда однопитчата. На примере вирусов природа как бы пробовала разные варианты генетического материала и, остановившись на двухнитчатой ДНК, сохранила ее затем на всем протяжении эволюции». Размеры молекулы нуклеиновой кислоты колеблются в широких пределах: молекулярная масса РНК наиболее мелких вирусов не превышает одного миллиона, а ДНК наиболее крупных вирусов имеет молекулярную массу около 250 миллионов. В первом примере геном вируса содержит всего 3000 нуклеотидов, во втором — их 750 тысяч! Другой основной биополимер, из которого построены вирусы, — белки. Белки также состоят из более простых соединений — аминокислот. Двадцать аминокислотных остатков соединены линейно, образуя цепь разной длины: молекулярная масса белков колеблется от немногих тысяч до сотен тысяч. Белковая (нолинептидная) цепь свертывается, и получается характерная для каждого белка фигура. Сравнительно недавно удалось полностью расшифровать химическое строение первого вируса. Им оказался наиболее просто устроенный бактериофаг М5-2, в РНК которого закодировано всего три белка: А-белок, белок оболочки и репликаза. Важно заметить, что РНК этого фага сама служит матрицей для образования белков. Как оказалось, она содержит 3569 нуклеотидов, 129 из них располагаются в «начале» молекулы и не транслируются, последующие 1179 нуклеотидов содержат информацию для А-белка, 390 — для белка оболочки и, наконец, 1635 — для самого крупного белка — фермента репликазы, который делает дочерние копии РНК. Между всеми этими структурными участками располагаются своеобразные «запятые», состоящие из 26 и 36 нуклеотидов, а в «конце» молекулы находится заключительная «точка», вмещающая 174 нуклеотида. Существует строгое соответствие между генетическим кодом (последовательностью нуклеотидов) и аминокислотным составом получаемых белков. Дополнительная проверка аминокислотной последовательности белков фага МS-2 точно соответствовала предсказанной теоретически (по нуклеотидам). Итак, две основные химические составные части вирусов — нуклеиновые кислоты и белки. Наиболее просто организованные, они ничего другого не имеют. Но более сложно организованные вирусы имеют в своем составе углеводы, липиды (жиры) и другие химические соединения.
Однако существуют вирусы с более сложным строением. Так, вирусы гриппа и парагриппа имеют сердцевину (нуклеотид) в виде туго свернутой спирали (спиральный тип симметрии) и внешние оболочки, образующие шаровидное тело с кубическим типом симметрии. Некоторые бактериофаги (бактериальные вирусы) еще более сложны: головка их представляет полный икосаэдр, в котором заключено генетическое вещество вируса.
