- •Билет 1
- •Понятие цифровой специализированной системы.
- •1.2. Цифровая свертка сигналов.
- •Билет 2
- •2.1. Стадии проектирования цифровой специализированной системы.
- •2.2. Линейные разностные уравнения с постоянными коэффициентами.
- •Билет 3
- •3.1. Структурная организация системы цифровой обработки сигналов
- •Билет 4
- •4.1. Первичные преобразователи информации. Классификация. Принципы действия. Характеристики. Условия применения.
- •Билет 5
- •5.1. Устройства ввода данных. Фильтры, ацп.
- •5.2. Типовые z-преобразования. Z-преобразование цифрового единичного скачка.
- •Билет 6
- •6.1 Организация ввода-вывода данных в системах цос. Ввод по готовности. Ввод по прерываниям. Прямой доступ в память.
- •6.2. Типовые z-преобразования. Z-преобразование убывающей дискретной экспоненты.
- •Билет 7
- •7.1. Общие сведения о сигналах. Классификация сигналов.
- •7.2. Обратное z-преобразование. Способы вычисления.
- •Билет 8
- •8.1. Формы представления сигналов. Аналоговые, дискретные, цифровые сигналы.
- •8.2. Передаточная функция линейной дискретной системы. Определение по импульсной характеристике. (См. Вопрос) билет 9
- •9.1. Детерминированные и случайные сигналы: периодические, почти периодические, переходные, стационарные, эргодические, нестационарные.
- •9.2. Передаточная функция линейной дискретной системы. Определение по разностному уравнению. Нули и полюсы.
- •Билет 10
- •10.1. Вычисление числовых характеристик сигналов
- •10.2. Передаточная функция звена первого порядка.
- •Билет 11
- •11.1. Параметры, характеризующие форму сигнала
- •11.2. Передаточная функция звена второго порядка.
- •Билет 12
- •12.1. Интегрирование полигармонических сигналов в частотной области
- •12.2. Частотная характеристика линейной дискретной системы.
- •Билет 13
- •13.1. Формирование периодических сигналов. Табличный способ.
- •13.2. Расчет ачх и фчх по передаточной функции.
- •Билет 14
- •14.1. Формирование полигармонических сигналов.
- •14.2. Расчет ачх и фчх звена первого порядка.
- •Билет 15
- •15.1. Единичный импульс. Представление дискретных сигналов.
- •15.2. Расчет ачх и фчх звена второго порядка.
- •Билет 16
- •16.1. Дискретизация непрерывных сигналов. Теорема Котельникова. Частота Найквиста.
- •16.2. Понятие цифрового фильтра.
- •Билет 17
- •17.1. Линейные системы, инвариантные к сдвигу.
- •17.2. Этапы проектирования цифрового фильтра.
- •Билет 18
- •18.1. Импульсная характеристика линейных систем. Устойчивость и физическая реализуемость.
- •18.2. Обеспечение линейности фчх цифрового фильтра.
- •Билет 19
- •19.1. Ряд Фурье и интегральное преобразование Фурье. Ряд Фурье в комплексной форме.
- •19.2. Цифровые фильтры с бесконечной импульсной характеристикой. Метод билинейного z-преобразования расчета бих-фильтров низкой частоты. Билет 20
- •20.1. Преобразование Фурье для прямоугольного импульса.
- •20.2. Цифровые фильтры с бесконечной импульсной характеристикой. Метод билинейного z-преобразования расчета бих-фильтров высокой частоты.
- •Билет 21
- •21.1. Представление периодической последовательности единичных импульсов в частотной области.
- •21.2. Цифровые фильтры с конечной импульсной характеристикой. Расчет ких-фильтров.
- •25.2. Сглаживание данных. Медианная фильтрация.
- •Билет 26
- •26.1. Понятие линейной дискретной системы//метода 8.1
- •26.2. Определение параметров тренда методом наименьших квадратов.
- •Билет 27
- •27.1. Импульсная характеристика линейных систем. Устойчивость и физическая
- •27.2. Понятие вейвлет-преобразования, отличие от преобразования Фурье.
- •Билет 28
- •28.2. Математическое описание вейвлетных функций. Билет 29
- •29.2. Расчет дискретных вейвлетов.
13.2. Расчет ачх и фчх по передаточной функции.
Для линейных систем, принимая в качестве сигнала на входе системы собственную функцию , мы вправе ожидать на выходе системы сигнал . Подставляя эти выражения в разностное уравнение получаем:
Отсюда, частотная передаточная функция системы (частотная характеристика при нормировке к ао=1):
В общем случае H( ) является комплексной функцией, модуль которой R( ) называется амплитудно-частотной характеристикой системы (АЧХ), а аргумент - фазочастотной характеристикой (ФЧХ).
;
Физический смысл частотной характеристики системы достаточно прост. Произвольный сигнал на входе системы может рассматриваться в виде суммы гармонических составляющих с различным набором амплитуд и начальных фазовых углов. Амплитудно-частотной характеристикой системы устанавливаются коэффициенты усиления системой (коэффициенты передачи) этих частотных составляющих, а фазочастотной характеристикой - сдвиг фаз этих частотных составляющих в выходном сигнале относительно начальных фаз во входном сигнале.
В общем случае H( ) является комплексной функцией, модуль которой R( ) называется амплитудно-частотной характеристикой системы (АЧХ), а аргумент - фазочастотной характеристикой (ФЧХ).
;
Физический смысл частотной характеристики системы достаточно прост. Произвольный сигнал на входе системы может рассматриваться в виде суммы гармонических составляющих с различным набором амплитуд и начальных фазовых углов. Амплитудно-частотной характеристикой системы устанавливаются коэффициенты усиления системой (коэффициенты передачи) этих частотных составляющих, а фазочастотной характеристикой - сдвиг фаз этих частотных составляющих в выходном сигнале относительно начальных фаз во входном сигнале.
ЧХ зависит только от внутренних параметров системы
Билет 14
14.1. Формирование полигармонических сигналов.
Пусть задано
k – количество составляющих
и массивы частоты и фазы этих составляющих.
Алгоритм:
По k от 0 до k-1
Начало1:
Ind[k]=round(N*Fi[k]/360);
Конец1:
j=0;
x[j]=0;
Начало2:
По k от 0 до k-1
Начало3:
x[j]=x[j]+AMP[k]+TAB[Ind[k]];
Ind[k]=(Ind[k]+F[k]) mod N;
Конец3;
j=j+1;
if (j>=M) goto Выход;
x[j]=0;
goto Начало2;
Выход;
Из методы:
Достаточно просто сформировать полигармонический сигнал используя таблицу:
,
Сформировать полигармонический сигнал и сформировать его в массиве Х:
В качестве исходных данных заданы;
AMPL[ ] - массив амплитуд;
F[ ] - массив частот;
[ ] - массив начальных фаз;
k- число элементов в массивах исходных данных;
Алгоритм формирования полигармонического сигнала можно представить следующим образом:
Цикл по k от 0 до k – 1
Начало1
IND[k]
:=
;
Конец1;
j:=0; x[j]:=0;
Начало 2:
Цикл по k от 0 до k – 1
Начало 3
x[j] := x[j] + AMPL[k]*TAB[IND[k]];
IND[k] := (IND[k] + F[k]) mod N;
Конец 3;
j := j + 1;
if (j >= M) goto Выход;
x[j]:=0;
goto Начало2;
Выход.
14.2. Расчет ачх и фчх звена первого порядка.
Для линейных систем, принимая в качестве сигнала на входе системы собственную функцию , мы вправе ожидать на выходе системы сигнал . Подставляя эти выражения в разностное уравнение получаем:
Отсюда, частотная передаточная функция системы (частотная характеристика при нормировке к ао=1):
В общем случае H( ) является комплексной функцией, модуль которой R( ) называется амплитудно-частотной характеристикой системы (АЧХ), а аргумент - фазочастотной характеристикой (ФЧХ).
;
Физический смысл частотной характеристики системы достаточно прост. Произвольный сигнал на входе системы может рассматриваться в виде суммы гармонических составляющих с различным набором амплитуд и начальных фазовых углов. Амплитудно-частотной характеристикой системы устанавливаются коэффициенты усиления системой (коэффициенты передачи) этих частотных составляющих, а фазочастотной характеристикой - сдвиг фаз этих частотных составляющих в выходном сигнале относительно начальных фаз во входном сигнале.
__________________________________________________________
