- •1. Этапы развития физиологии. Вклад отечественных ученых в развитие физиологической науки.
- •3. Генез потенциала действия, его фазы. Следовые потенциалы. Ионные насосы.
- •4. Понятие о критическом уровне деполяризации. Закон "Все или ничего".
- •6. Закон силы-времени. Понятие о реобазе, полезном времени и хронаксии. Клиническое значение определения реобазы и хронаксии у человека.
- •7. Механизм проведения нервного импульса по безмиелиновым и миелиновым нервным волокнам. Преимущества миелинизации нервных волокон. Законы проведения возбуждения по нервным волокнам.
- •8. Синапс. Классификация синапсов. Строение химического синапса. Характеристика стадий синаптической передачи в нервно-мышечном синапсе.
- •9. Строение скелетной мышцы. Основные положения теории мышечного сокращения. Механизм мышечного сокращения.
- •10. Одиночное мышечное сокращение, его фазы. Суммация сокращений и тетанус. Виды тетануса, его физиологическое значение.
- •11.Морфо-функциональная характеристика нейрона (сомы, дендритов, аксона, аксонного транспорта, метаболизма). Типы нервных клеток. Функциональная классификация нейронов.
- •13.Понятие о нервном центре. Характеристика физиологических свойств нервных центров.
- •14. Спинной мозг. Понятие о белом и сером веществе сегмента. Морфо-функциональная характеристика нейронов серого вещества спинного мозга. Функциональная специализация корешков спинного мозга.
- •15. Клинически значимые сухожильные рефлексы у человека.
- •16. Функции продолговатого мозга.
- •17. Функции среднего мозга. Механизм возникновения децеребрационной ригидности.
- •18. Кора больших полушарий. Характеристика сенсорных, двигательных и ассоциативных зон коры. Функциональная асимметрия полушарий. Электроэнцефалография.
- •19. Общие свойства гормонов. Классификация гормонов. Механизм действия стероидных и пептидных гормонов.
- •20..Гормоны поджелудочной железы. Характеристика их физиологических эффектов.
- •21. Щитовидная железа. Характеристика физиологических эффектов йодсодержащих гормонов.
- •22.Женские половые гормоны. Их физиологические эффекты.
- •23.Мужские половые гормоны. Их физиологические эффекты. Роль эпифиза в деятельности половых желез.
- •24.Гормоны мозгового вещества надпочечников. Физиологические эффекты адреналина. Последствия взаимодействия адреналина с альфа- и бета- адренорецепторами.
- •25. Гормоны коркового вещества надпочечников. Их физиологические эффекты.
- •26.Состав и функции крови. Гематокрит, нормальные значения, факторы, влияющие на гематокрит. Функции воды плазмы крови.
- •28. Эритроциты. Строение, заряд, количество, функции, особенности метаболизма. Белки мембраны эритроцита, их строение и функции.
- •29.Гемоглобин. Типы гемоглобина. Соединения гемоглобина с газами, их свойства. Методы определения гемоглобина.
- •30.Лейкоциты, их морфофункциональная характеристика, количество, функции, методы подсчета. Лейкоцитарная формула, метод ее определения.
- •31. Понятие о специфическом и неспецифическом иммунитете.
- •32. Классификация групп крови по системе аво. Характеристика агглютиногенов и агглютининов этой системы. Принципы переливания крови.
- •33. Теоретические основы определения группы крови.
- •34. Резус-принадлежность. Понятие о резус-факторе и резус-антителах. Принципы переливания крови с учетом резус-принадлежности. Резус конфликт в акушерской практике.
- •35.Тромбоциты, их строение, количество, функции. Характеристика сосудисто-тромбоцитарного гемостаза.
- •36. Свертывающая система крови. Характеристика стадий свертывания крови.
- •37.Физиологические свойства сердечной мышцы. Автоматизм. Топография и функции проводящей системы сердца.
- •38.Понятие о сердечном цикле. Характеристика фаз систолы желудочков. Звуковые явления в сердце во время систолы желудочков.
- •39.Характеристика фаз диастолы желудочков. Механизм возникновения звуковых явлений во время диастолы желудочков.
- •41. Характеристика однополюсных экг-отведений. Определение водителя ритма сердца.
- •42. Особенности иннервации сердца. Эффекты стимуляции и перерезки сердечных нервов. Ионный механизм хронотропных и инотропных влияний сердечных нервов.
- •43. Рефлекторная регуляция работы сердца. Характеристика сердечных рефлексов с сосудистых рефлексогенных зон, рефлексы Гольца и Ашнера-Даниини.
- •45. Основные принципы гемодинамики. Понятие об объемной и линейной скорости кровотока и периферическом сосудистом сопротивлении (псс).
- •46. Функциональная классификация сосудов.
- •47. Характеристика факторов, определяющих величину артериального давления. Нормальные значения ад. Измерение ад.
- •48. Виды артериального давления, их характеристика.
- •49. Сосудистые рефлексы, направленные на регуляцию артериального давления.
- •50. Артериальный пульс, его происхождение. Сфигмография, сфигмограмма.
- •51. Спирография. Характеристика легочных объемов и емкостей. Понятие о функциональной остаточной емкости легких, ее физиологическом значении.
- •86. Механика дыхания.Механизм вдоха и выдоха.
- •54. Понятие о парциальном давлении и напряжении газов. Определение рО2 и рСо2 в атмосферном и альвеолярном воздухе. Особенности дыхания при повышенном и сниженном атмосферном давлении.
- •88. Газообмен в капиллярах большого круга кровообращения.
- •56. Кислородная емкость крови. Газообмен в капиллярах малого круга.
- •57. Регуляция дыхания. Понятие о дыхательном центре. Структура и функции инспираторного центра. Рефлекс Геринга-Брейра. Значение моста и коры больших полушарий в регуляции дыхания.
- •59. Желудочный сок. Его состав, свойства различных компонентов желудочного сока.
- •60. Характеристика фаз желудочной секреции.
- •61.Методы исследования секреторной функции пищеварительного тракта у животных и человека.
- •62. Состав и свойства панкреатического сока. Регуляция панкреатической секреции.
- •63. Желчь, ее состав и свойства, значение в пищеварении. Регуляция образования и выделения желчи.
- •64. Энергетический обмен. Характеристика основных показателей энергетического обмена, их физиологическое значение. Основной обмен.
- •65. Понятие о "ядре" и "оболочке" тела. Характеристика способов теплоотдачи. Факторы, определяющие их эффективность.
- •66. Характеристика способов теплообразования. Механизм терморегуляции при низкой температуре внешней среды.
- •67. Механизм терморегуляции при высокой температуре внешней среды.
- •68. Строение и кровоснабжение нефрона. Клубочковая фильтрация, состав ультрафильтрата, фильтрационный барьер, скорость клубочковой фильтрации. Силы, определяющие фильтрацию.
- •69. Характеристика оптической системы глаза. Механизм аккомодации на ближнюю и дальнюю точку. Зрачковый рефлекс.
- •70.Функции наружного, среднего и внутреннего уха. Механизм восприятия высоты звука.
88. Газообмен в капиллярах большого круга кровообращения.
Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.
Газообмен в капиллярах большого круга.
Значение рО2 и рСО2 в
Артериальной крови: Тканях:
рО2 = 100 mm Hg pO2 = 40 mm Hg
pCO2 = 40 mm Hg pCO2 = 46 mmHg
Задачи:
Отдать О2 к тканям.
Взять СО2 из ткани и перевести их в химически нейтральные соединения.
Диффузия дыхательных газов осуществляется по градиенту давления О2 покидает, а Со2 входит в кровь.
О2 находится в эритроцитах в виде калиевой соли оксигемоглобина КНвО2.
КНвО2---KHb + O2
В эритроцитах под влиянием фермента карбоангидразы осуществляется образование угольной кислоты (Н2СО3).
CO2 + H2O --H2CO3
При взаимодействии Н2СО3 с КНв образуется нейтральное соединение КНСО3
KHb + H2CO3 - KHCO3 + HHb
Затем:
HHb + CO2 HHbCO2
Т.к. СО2 постоянно поступает в плазму потом в эритроцит, непрерывно идет образование Н2CO3,которое диссоциирует на Н+ и НСО3-
Когда концентрация НСО3- в эритроците станет больше чем в плазме , то НСО3 будет дифундировать в плазму крови. В плазме крови имеется NaCl. Осуществляется обмен между НСО3- и Cl-, чтобы заряд мембраны не изменялся. В плазме крови образуется NaHCO3, а Cl- поступает в эритроцит.
НСО3 - + Na+ NaHCO3
Итак, СО2 транспортируется кровью в виде трех химических нейтральных соединения:
KHCO3 – 60-70%
HHbCO2 – 20-30%
NaHCO3 – 8-12%
56. Кислородная емкость крови. Газообмен в капиллярах малого круга.
Кислородная емкость крови - количество кислорода, одномоментно находящегося в связанном виде с гемоглобином в артериальной крови.
легкие снабжаются кровью от обоих кругов кровообращения. Но газообмен происходит только в капиллярах малого круга, в то время как сосуды большого круга кровообращения обеспечивают питание легочной ткани. В области капиллярного русла сосуды разных кругов могут анастомозировать между собой, обеспечивая необходимое перераспределение крови между кругами кровообращения. Сопротивляемость току крови в сосудах легких и давление в них меньше, чем в сосудах большого круга кровообращения, диаметр легочных сосудов больший, а длина их меньшая. Во время вдоха увеличивается приток крови в сосуды легких и вследствие их растяжимости они способны вмещать до 20—25% крови. Поэтому легкие при определенных условиях могут выполнять функцию депо крови. Стенки капилляров легких тонкие, что создает благоприятные условия для газообмена, но при патологии это может привести к их разрыву и легочному кровотечению. Резерв крови в легких имеет большое значение в случаях когда необходима срочная мобилизация дополнительного количества крови для поддержания необходимой величины сердечного выброса, например в начале интенсивной физической работы, когда другие механизмы регуляции кровообращения еще не включились.
Газообмен - это транскапиллярный обмен дыхательных газов (СО2 и О2). Осуществляется между венозной кровью и воздухом альвеол, в малом кругу кровообращения, и между артериальной кровью и тканями в большом кругу кровообращения.
Газообмен в капиллярах малого круга.
Значение рО2 и рСО2 в
В легких: Тканях:
рО2 = 103 mmHgpO2 = 40 mmHg
pCO2 = 40 mm Hg pCO2 = 46 mmHg
Задачи:
1. Разрушить соединения, в виде которых СО2 транспортируется в кровь и вывести их.
2. Оксигенировать кровь
1) HHbCO2 – диссоциирует по градиенту давления:
HHbCO2 HHb + CO2
Чем больше Hb сбрасывает СО2, тем легче он связывается с О2 по градиенту давления:
HHb + O2 = HHbO2
В эритроците сейчас находятся следующие вещества:
KHCO3 иHHbO2, которые взаимодействуют друг с другом:
KHCO3 + HHbO2-KHbO2 + H2CO3
Под действием карбоангидразы:
H2CO3 -CO2 + H2O
К этому времени мы освободились от двух соединений, транспортируемых СО2 (HHbCO2 иKHCO3)
Нам осталось освободится от NaHCO3 находящийся в плазме крови.
В МКК Н2СО3 ферментативно расщепляется на H2OиCO2, а не спонтанно диссоциирует на Н+ и НСО3-
В малом кругу в крови практически нет иона бикарбоната, поэтому НСО3- дифундирует из плазмы крови в эритроците. В эритроците НСО3- связывается с протоном Н+ чуть –чуть подкисливая кровь образуется Н2СО3 – расщепляется на Н2О и СО2:
HCO3- + H+ H2CO3 H2O + CO2
Итак, все три соединения в виде которых СО2 транспортируется в МКК. Это:
KHCO3 – в эритроците
NaHCO3 – в плазме
HHbCO3 – в эритроците
Кислородная емкость крови _ это количество мл О2 транспортируется кровью
КЕК ограниченна содержанием Нb
Hb – 14,2% - количество грНb 100 ml
1 грHb может связываться с 1,34 мл О2 – коэффициент Хюффнера
КЕК = 1,34 * 14=19 об.%
Объемный % - количество мл газов, содержащихся в 100 мл крови.
