- •1.Историческая справка по развитию теории надежности и ее прикладному значению
- •02. Основные понятия и определения теории надежности
- •3.Классификация отказов информационных систем
- •4.Основные свойства надежности
- •5.Количественные показатели надежности как характеристики случайных величин
- •6.Показатели безотказности невосстанавливаемых систем
- •7.Условные показатели безотказности невосстанавливаемых систем
- •8.Статистическая оценка показателей безотказности
- •9.Показатели безотказности восстанавливаемых систем
- •10.Показатели сохраняемости
- •11.Показатели ремонтопригодности
- •12.Показатели долговечности
- •13.Комплексные показатели надежности
- •14.Функции готовности и простоя, коэффициент технического использования
- •15.Количественные показатели безопасности
- •16.Классические методы расчета надежности систем
- •17.Логико-вероятностный метод расчета надежности сложных систем
- •18.Идея топологического метода расчета надежности систем
- •19.Основные понятия, применяемые при топологическом методе расчета надежности систем
- •20.Методика определения показателей надежности при использовании топологического метода
- •21.Уровни рассмотрения деятельности человека при структурном методе оценки надежности
- •22.Характеристики надежности единиц деятельности человека
- •23.Характеристики надежности программных единиц (структурный метод расчета надежности)
- •24.Методика построения структуры деятельности человека (структурный метод расчета надежности)
- •25.Контроль надежности сложных систем при испытаниях
- •26.Экспериментальная оценка надежности (план испытаний)
- •27.Статистическая оценка показателей надежности при определительных испытаниях. Методы оценки показателей надежности.
- •28.Общие принципы обеспечения и контроля надежности при серийном производстве
- •29.Статистические методы контроля надежности массовой продукции
- •30.Одновыборочный контроль надежности
- •31.Контроль надежности методом двухкратной выборки
- •32.Последовательный контроль надежности
- •33.Методы и виды резервирования
- •34.Постановка задачи оптимального резервирования
- •35.Расчет резерва методом неопределенных множителей Лагранжа и градиентным методом
- •36.Резервирование методом динамического программирования
- •37.Надежность программного обеспечения ис
- •38.Тестирование программ при проектировании
- •39.Статистические испытания комплексов программ
- •40.Метод оценки функциональной надежности алгоритмов и программ
- •41.Структурный метод оценки функциональной надежности алгоритмов и программ
- •42.Математические модели надежности блоков операций эвм без контроля сбоев
- •43.Математические модели надежности блоков операций эвм при наличии контроля сбоев
- •44.Методика расчета надежности эвм с учетом структуры алгоритма и программы
- •45.Оценка эффективности функционирования сложных систем с учетом их надежности
- •46.Оценка эффективности функционирования сложных систем кратковременного действия с дискретным множеством состояний
- •47.Оценка эффективности функционирования сложных систем кратковременного действия, состоящих из элементов с непрерывным множеством состояний
- •48.Оценка эффективности функционирования сложных систем длительного характера действия
- •49.Факторы, влияющие на надежность информационных систем
- •50.Задачи обеспечения надежности информационных систем. Пути повышения надежности систем при проектировании, изготовлении и эксплуатации
- •51.Эксплуатация информационных систем. Система технического обслуживания и ремонта.
- •52. Контроль работоспособности. Рациональный выбор числа контролируемых точек нерезервируемой аппаратуры
50.Задачи обеспечения надежности информационных систем. Пути повышения надежности систем при проектировании, изготовлении и эксплуатации
Проектирование
Можно выделить четыре группы мероприятий по повышению надежности объектов при их проектировании:
К системным методам относятся организационно-экономические мероприятия по стимулированию повышения надежности и технические мероприятия.
Схемные методы объединяют мероприятия по повышению надежности объектов путем совершенствования принципов построения этих объектов.
К конструктивным методам относятся мероприятия по созданию или подбору элементов, созданию благоприятных режимов работы, принятию мер по облегчению ремонта и т. д. Обычно оказываются более надежными те элементы, которые не имеют перемещающихся деталей, накаливаемых нитей и тонких обмоток.
Планирование эксплуатационных мероприятий на стадии проектирования объектов состоит в разработке системы технического обслуживания, включающей подсистемы профилактики, восстановления, кадров и снабжения. Проектирование объекта должно осуществляться в соответствии с номенклатурой работ по техническому обслуживанию.
Изготовление
Одна из основных причин появления отказов состоит в разбросе значений качества элементов. Поэтому значительную часть производственных мероприятий по повышению надежности элементов и систем составляют мероприятия по улучшению однородности выпускаемой продукции. Все эти мероприятия можно свести в четыре группы:
Совершенствование технологии производства является одной из сторон общего прогресса науки и техники. Все мероприятия в этой области опираются не только на последние достижения науки, но и в значительной мере на накопленный опыт производства продукции.
Автоматизация производства обеспечивает высокую степень однородности продукции, а, следовательно, и высокую надежность изделий.
Технологические (тренировочные) прогоны проводятся с целью выявления скрытых производственных дефектов и причин их возникновения.
Статистическое регулирование качества продукции значительно повышает однородность продукции. Основная идея: Причины, вызывающие отклонения качества продукции, разбиваются на две группы. Одна из них — группа случайных причин — считается недоступной воздействию человека вследствие многочисленных причин и ничтожности каждой из них. Помимо случайных причин, которые всегда существуют в любом производстве, иногда могут появляться «определимые причины», которые могут быть устранены путем сознательного вмешательства в технологический процесс.
Эксплуатация
При облегчении электрических, тепловых и вибрационных режимов работы элементов интенсивности их отказов значительно уменьшаются. При переносе транспортируемой электронной аппаратуры можно обеспечить защиту от ударов и вибраций. Правильная амортизация аппаратуры часто является основным фактором, определяющим ее надежность. При оценке условий работы элементов особое внимание нужно обращать на переходные процессы, возникающие при включении и выключении, а также при других изменениях режима работы аппаратуры. Испытываемые элементом при переходных процессах перегрузки могут быть одной из причин пониженной надежности аппаратуры.
