
- •Функция задана таблично
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
- •Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
- •Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
- •Функция задана таблично:
- •Построить интерполяционный полином Ньютона для функции, заданной таблично:
- •Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
- •Функция задана таблично
- •Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
Контрольная работа по Вычислительной матеМатике
Преподаватель: к.т.н., доц. Садыков А.В.
Курс: Второй Семестр: III Специальность: АСОиУ .
Группа: 3333 ( Заочное отделение, на базе СПО).
Вариант 1
Отделить корни уравнения графически и уточнить один из них методом итераций с точностью
=0,001.
Решить систему нелинейных уравнений методом Ньютона с точностью
. Начальное приближение определить графическим способом.
Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
Решить систему линейных уравнений методом Зейделя с точностью .
Функция задана таблично:
-
0,7
1,5
2
3,1
4
1,9
6,1
7,4
8,8
9,5
Построить
интерполяционный полином Лагранжа для
этой функции. С помощью этого полинома
найти приближенное значение функции в
точке
.
Построить интерполяционный полином Ньютона для функции, заданной таблично:
-
0,2
0,4
0,6
0,8
1,0
3,9
4,1
4,4
4,7
5,3
С помощью этого
полинома найти приближенное значение
функции при
.
Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
Функция задана таблично
-
7,2
8,9
10,7
15,6
18,9
20,2
22,7
3,49
4,38
5,41
7,54
9,91
10,13
10,98
Построить
аппроксимирующую прямую
,
используя метод наименьших квадратов
(решить сначала вручную, затем с помощью
программы).
Дана задача Коши для обыкновенного дифференциального уравнения I порядка:
(
–
номер варианта)
Найти численное решение задачи методами Эйлера и Рунге-Кутта при .
10. Найти численное решение краевой задачи
методом конечных разностей
а) вручную: при
;
б) с помощью
программы: при
.
Здесь
;
;
;
;
–
номер варианта
ЛИТЕРАТУРА
1. Турчак Л.И., Плотников П.В. Основы численных методов. – М.: Физматлит, 2002.
2. Численные методы / Лапчик М.П., Рагулина М.И., Хеннер Е.К. М.: Издат. центр «Академия», 2004.
3. Приближенное решение нелинейных уравнений: Метод. указания / КХТИ. Сост. А.В. Садыков, Казань, 1991.
4. Некоторые методы решения задачи аппроксимации: Метод. указания / Казан. гос. технол. ун-т. Сост. А.Г. Багоутдинова, Т.А. Хрузина, Казань, 2000.
Вариант 2
Отделить корни уравнения графически и уточнить один из них методом касательных с точностью =0,001.
Решить систему нелинейных уравнений методом Ньютона с точностью . Начальное приближение определить графическим способом.
Решить систему линейных уравнений с трехдиагональной матрицей методом прогонки
Решить систему линейных уравнений методом Зейделя с точностью .
Функция задана таблично:
-
1,5
2,5
3
4
5
0,2
09
1,8
2,4
2,2
Построить
интерполяционный полином Лагранжа для
этой функции. С помощью этого полинома
найти приближенное значение функции в
точке
.
Построить интерполяционный полином Ньютона для функции, заданной таблично:
-
0,1
0,5
0,9
1,3
1,7
1,3
1,7
2,8
3,2
2,9
С помощью этого полинома найти приближенное значение функции при .
Вычислить определенный интеграл методами прямоугольников, трапеций и парабол при
Функция задана таблично
-
0,5
1,5
2
3
4
4,5
5
2,61
5,49
7,02
10,10
13,11
14,6
16,12
Построить аппроксимирующую прямую , используя метод наименьших квадратов (решить сначала вручную, затем с помощью программы).