Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Веников Путятин (ч1).docx
Скачиваний:
0
Добавлен:
01.07.2025
Размер:
2.36 Mб
Скачать
  1. Приливные электрические станции

Энергия морских приливов, или, как иногда ее назы­вают, «лунная энергия», известна человечеству со времен глубокой древности. Эта энергия еще в далекие истори­ческие эпохи использовалась для приведения в движение различных механизмов, в особенности мельниц. В Гер­мании с помощью энергии приливной волны орошали поля, в Канаде — пилили дрова. В Англии приливная водоподъемная машина служила в прошлом веке для снабжения Лондона водой.

Существует огромное количество остроумных проек­тов приливных технических установок. Только во Фран­ции к 1918 г. было опубликовано более 200 таких патен­тов. В начале XX в. предпринимались попытки сооруже­ния мощных приливных электростанций. В США в 1935 г. было начато строительство ПЭС Кводди мощностью 200 тыс. кВт. Вскоре строительство, на которое ушло 7 млн. долл., было прекращено из-за выявившейся вы­сокой стоимости электроэнергии (на 33% больше стои­мости на тепловой станции). По составленному в 1940г. в СССР проекту Кислогубская ПЭС вырабатывала бы электроэнергию стоимостью в 2 раза большей, чем у реч­ных электростанций.

Приливные электрические станции (ПЭС) выгодно от­личаются от ГЭС тем, что их работа определяется косми­ческими явлениями и не зависит от многочисленных по­годных условий, определяемых случайными факторами.

Наиболее существенный недостаток ПЭС — неравно­мерность их работы. Неравномерность приливной энер­гии в течение лунных суток и лунного месяца, отлича­ющихся от солнечных, не позволяет систематически ис­пользовать ее в периоды максимального потребления в системах. Можно компенсировать неравномерность ра­боты ПЭС, совместив ее с ГАЭС. В то время, когда име­ется избыточная мощность ПЭС, ГАЭС работает в насос­ном режиме, потребляя эту мощность и перекачивая воду в верхний бассейн. Во время спадов в работе ПЭС в ге­нераторном режиме работает ГАЭС, выдавая электро­энергию в систему. В техническом отношении такой про­ект удачен, но дорогостоящ, так как требуется большая установленная мощность электрических машин.

Также удачно ПЭС может сочетаться с речной ГЭС, имеющей водохранилище. При совместной работе ГЭС увеличивает мощность при спаде мощности ПЭС и ее ос­тановке; в то время как ПЭС работает с достаточно большой мощностью, ГЭС запасает воду в водохранили­ще. Таким образом, можно уменьшить как суточную, так и сезонную неравномерность работы ПЭС.

ПЭС работают в условиях быстрого изменения напо­ра, поэтому их турбины должны иметь высокие КПД при переменных напорах. В настоящее время создана доста­точно совершенная и компактная горизонтальная турби­на двойного действия. Электрический генератор и часть деталей турбины заключены в водонепроницаемую кап­сулу и весь гидроагрегат погружен в воду.

  1. Атомные электрические станции

Первая в мире АЭС была введена в эксплуатацию в г. Обнинске (СССР) 27 июня 1954 г., о чем сообщило Московское радио. Затем сообщение об успешно завер­шенных работах по созданию первой промышленной электростанции на атомной энергии было передано за­рубежными информационными агентствами, прокоммен­тировано радио и прессой, воспринято как сенсация.

На АЭС энергия, получаемая в результате деления ядер урана на осколки, превращается в тепловую энер­гию пара или газа, затем в электрическую энергию, т. е. в энергию движения электронов в проводнике. Деление ядер урана происходит при бомбардировке их нейтрона­ми, в результате чего получаются осколки ядер, обычно неодинаковые по массе, нейтроны и другие продукты де­ления, которые разлетаются в разные стороны с огромны­ми скоростями и имеют, следовательно, большие кине­

тические энергии. Получаемая при делении ядер энергия почти полностью превращается в теплоту. Установка, в которой происходит управляемая цепная ядерная реак­ция деления, называется ядерным реактором.

Обычные ТЭС принципиально отличаются от АЭС только тем, что рабочее тело на них получает теплоту в парогенераторах при сжигании органического топлива (на АЭС — в ядерных реакторах). Для подогревания во­ды и превращения ее в пар в ТЭС используется теплота, получаемая при сжигании угля, а в АЭС (рис. 2.25) — теплота, получаемая с помощью управляемой ядерной реакции деления.

Общий вид современной АЭС показан на рис. 2.26, а. Основной элемент станции — ядерный реактор — состоит из активной зоны, отражателя, системы охлаждения, си­стемы управления, регулирования и контроля, корпуса и биологической защиты.

В рабочие каналы активной зоны помещают ядерное топливо в виде урановых или плутониевых стержней, по­крытых герметичной металлической оболочкой. В этих стержнях и происходит ядерная реакция, сопровожда­емая выделением большого количества тепловой энер­гии. Поэтому стержни с ядерным топливом называют тепловыделяющими элементами или сокращенно твэла- ми. Количество твэлов в активной зоне доходит до не­скольких тысяч.

В активную зону помещают замедлитель нейтронов, через нее также проходит теплоноситель, под которым понимают вещество, служащее для отвода теплоты. В ка­честве теплоносителя используется обычная вода, тяже­лая вода, водяной пар, жидкие металлы, некоторые инертные газы (углекислый газ, гелий). Теплоноситель с помощью принудительной циркуляции омывает в рабо­чих каналах поверхности твэлов, нагревается и уносит теплоту для дальнейшего использования. Активная зона окружена отражателем, который возвращает в нее вы­летающие нейтроны.

Мощность энергетического реактора определяется воз­можностями быстрого отвода теплоты из активной зоны. Основная часть энергии, выделяющейся при ядерной ре­акции в твэлах, идет на нагревание ядерного топлива, а небольшая часть — на нагревание замедлителя. По­скольку отвод теплоты происходит за счет конвективного теплообмена, то для повышения его интенсивности сле­дует увеличивать скорость движения теплоносителя. Так,

скорость движения воды в активной зоне составляет при­мерно 3—7 м/с, а скорость газов — 30—80 м/с.

Управление реактором производится с помощью спе­циальных стержней, поглощающих нейтроны. Стержни вводятся в активную зону и изменяют поток нейтронов, а следовательно, и интенсивность ядерной реакции.

Теплота, выделяемая в реакторе, может передаваться рабочему телу теплового двигателя (турбины) по одно­контурной (рис. 2.26, б), двухконтурной (рис. 2.26, в) и трехконтурной (рис. 2.26, г) схемам.

Каждый контур представляет собой замкнутую систе­му. Многоконтурная схема обеспечивает радиационную безопасность и создает удобства для обслуживания обо­рудования. Выбор числа контуров определяется в зави­симости от типа реактора и свойств теплоносителя, ха­рактеризующих его пригодность для использования в ка­честве рабочего тела в турбине.

При работе АЭС по двухконтурной схеме нагретый в реакторе теплоноситель отдает теплоту рабочему телу в парогенераторе. Если в качестве теплоносителя использу­ется вода, то она охлаждается в парогенераторе на 15— 40°С. Теплоносители в виде жидкостей и газов охлажда­ются в парогенераторах значительнее, иногда на несколь­ко сотен градусов.

Рис. 2.26. Общий вид и схемы работы АЭС: а — общий вид атомной электростанции: 1хранилища топлива; 2 — реак­торные здания; 3 — машинный зал; 4 — электрическая подстанция; 5 — хра­нилище жидких отходов; б, в, г схемы работы одно-, двух-, трехконтурных АЭС: / — реактор с первичной биологической защитой; 2— вторичная биоло­гическая защита; 3 — турбина; 4 — электрический генератор; 5 — конденсатор или газоохладитель; 6 — насос или компрессор; 7 — регенеративный теплооб­менник; 8 — циркуляционный насос; 9 — парогенератор; 10 — промежуточный

теплообменник

Первый контур радиоактивен и поэтому целиком на­ходится внутри биологической защиты. Во втором конту­ре рабочее тело — вода и пар — нигде не соприкасается с радиоактивным теплоносителем первого контура, поэто­му с ним можно обращаться так же, как и на обычных ТЭС.

В качестве теплоносителя на первой АЭС использует­ся вода (рис. 2.27). Чтобы в парогенераторе вода первого контура нагревала воду второго контура, превращала ее в пар и при этом не испарялась, в этом контуре исполь­зуется повышенное давление, так как при этом темпера­тура кипения воды также повышается. С увеличением давления температура кипения воды изменяется следу­ющим образом: при р— 101,3 кПа значение £Кип=100°С, а при р= 1013 кПа значение /Кип=180°С. В графитовый замедлитель помещены подвижные кадмиевые стержни- поглотители, которые автоматически регулируют процесс распада путем большего или меньшего погружения.

В теплообменнике исполь-

S)

з

О '

J з-

^1 Ws

7

-L

©

уется противоток, что да­ет возможность нагревать рабочее тело второго кон­тура до 260°С и охлаж­дать воду первого конту­ра до 130°С.

Б

Рис. 2.26. Продолжение

иологическая защита выполняет функции изо­ляции реактора от окру­жающего пространства, т. е. от проникновения за пределы реактора мощ­ных потоков нейтронов, а-, р-, у-лучей и осколков деления. Защита реактора выполняется в виде тол­стого слоя (до нескольких метров) бетона с внутрен­ними каналами, по кото­рым циркулирует вода или воздух для отвода теплоты. Количество этой теплоты равно 3—5% от всей выделенной в реакто­ре энергии. Из-за относи­

тельно низкой температуры оно в дальнейшем не исполь­зуется.

Защита должна ограничивать уровни излучений до значений, не превышающих допустимых доз как при ра­боте реактора, так и при его останове.

Биологическая защита, в первую очередь, предназна­чается для создания безопасных условий работы обслу-

Рис. 2.27. Схема первой АЭС:

/ — графитовый замедлитель; 2 —стержни реактора; 3 — кольцевой коллектор; 4 — подогреватель; 5 — парогенератор;

6 — пароперегреватель; 7 — туроина; 8 — конденсатор; 9 — насос второго контура; 10 — компенсатор; 11 — насос пер­вого контура; 12 — стальной кожух; 13 — графитовый отра­жатель; 14 — бетонная защита

живающего персонала. Поэтому все излучающие устрой­ства (первый контур) помещаются внутри защитной оболочки.

Воспроизводство ядерного горючего. Цепную реакцию деления ядер можно получить с помощью изотопа урана 235U. В природе встречаются два вида изотопа урана — 235U и 238U — в существенно неодинаковом количестве. Запасы 238U составляют 99,3% от общих запасов урана, запасы 235U — всего лишь 0,7%.

Ядро 235U чрезвычайно неустойчиво и делится при по­падании в него нейтронов любых энергий. Ядро 238U ус­тойчиво и делится только при попадании быстрых нейт­ронов (обладающих большой энергией). Выделение нейтронов при делении 238U невелико, и вызвать цепную реакцию этого изотопа урана невозможно.

Вероятность захвата нейтронов ядрами в значитель­ной степени зависит от скорости нейтронов. По аналогии с определением вероятности попадания в сечение выде­ленной фигуры, которая возрастает с увеличением пло­щади сечения, вероятность захвата ядром нейтрона ха­рактеризуется сечением захвата. Непосредственно в мо­мент деления ядер урана скорость нейтронов примерно равна 20 000 км/с, при этом сечение захвата нейтронов ядрами 235U мало. Поэтому нейтроны необходимо замед­лить, пропустив их через вещество из легких элементов, не поглощающих нейтроны: воду, тяжелую воду, графит, бериллий.

При скорости нейтронов v = 30 км/с наступает ре­зонансный захват нейтронов ядрами урана 238U, которые образуют плутоний 239Ри, сходный по ядерным характе­ристикам с ураном 235U. Дальнейшее снижение скорости нейтронов вызывает уменьшение сечения захвата ядрами 238U и увеличение его ядрами 235U. Нейтроны, имеющие скорости около 2 км/с, называются тепловыми. Сечение захвата тепловых нейтронов ядрами 235U в 20 000 раз больше, чем ядер 238U. Тепловые нейтроны могут вызы­вать цепную реакцию у природного (необогащенного) урана.

При делении одного ядра урана выделяется 200 МэВ энергии, причем 1 эВ — это энергия, которую получает частица с зарядом, равным заряду электрона при про­хождении разности потенциалов в 1 В: 1эВ=1е-1ВХ Х1,6-10-12 эрг=4,45-10-26 кВт-ч; 1 эВ — основная еди­ница измерения энергии в ядерной и атомной физике.

В 1 г урана содержится 2,6-1021 ядер, при делении которых можно получить 23,2 МВт-ч энергии. При сжига­нии 1 г угля получается всего 7—8 Вт-ч энергии.

При захвате нейтронов ядрами 238U и 232Th образуют­ся плутоний 239Ри и уран 233U, способные создавать цеп­ные реакции деления и, следовательно, рассматриваемые как ядерное топливо. Такое ядерное топливо получают в специальных реакторах-размножителях.

В ядерной физике «размножителем» называют реак­тор, который на 1 атом сожженного топлива производит свыше одного расщепляющегося атома. Изотопы 232Th и 238U называют воспроизводящими. Деление одного яд­ра 235U в среднем сопровождается выделением 2,5 нейт­рона, из которых один нейтрон необходим для поддер­жания цепной реакции, а оставшиеся 1,5 нейтрона ис­пользуются для поглощения неделящимися ядрами.

Урановый цикл размножения на быстрых нейтронах показан на рис. 2.28. В СССР в 1973 г. в г. Шевченко на­чала работать первая в мире промышленная АЭС на быстрых нейтронах.

Перспективы атомных электростанций. Доля атомной энергетики в производстве электроэнергии в перспективе будет возрастать. Мнения ведущих специалистов в раз-

Воспроиздодящий Период '■>7ЛД/1ас'

изотоп полураспада паВ? гз°ня

Нейтрон /^А*мин/^\

Кинетическая

энергия

Продукты

деления

Нейтроны

Рис. 2.28. Урановый цикл размножения на быстрых нейтронах

личных странах сильно расходятся в отношении коли­чественной оценки перспектив развития атомной энер­гетики.

Реакторы, работающие на медленных нейтронах: во- до-водяные, кипящие водяные, газографитовые, уран- графитовые, тяжеловодяные и др., не позволяют наибо­лее эффективно использовать ядерное горючее. Реакто­ры на быстрых нейтронах обладают возможностью вос­производства ядерного горючего с коэффициентом вос­производства, достигшим 1,4 и выше, и временем удвое­ния ядерного горючего менее 10 лет. Но все же это время пока велико. Требуется 8—10 лет, чтобы получить плуто­ний, необходимый для построения аналогичного реакто­ра на быстрых нейтронах.

Один из важных вопросов ядерной энергетики состо­ит в выборе природного или обогащенного урана. В СССР применяется обогащенный уран, так как это позволяет лучше использовать ядерное горючее — более полно его выжигать —и осуществлять более широкий выбор конструкционных материалов, замедлителей нейт­ронов и теплоносителей.

Назовем основные преимущества атомной энергетики:

  1. АЭС почти не зависят от месторасположения ис­точников сырья вследствие компактности ядерного топ­лива и легкой его транспортировки. Однако для охлаж­дения АЭС необходим мощный источник воды (морской или пресной);

  2. сооружение мощных энергетических блоков име­ет благоприятные перспективы, так как один реактор может дать электрическую мощность около 2 ГВт;

  3. малый расход горючего не требует загрузки транс­порта;

  4. АЭС практически не загрязняют окружающую среду.

Надежность АЭС. В связи с широким строительством АЭС возникают естественные вопросы безопасности их работы и возможных вредных влияний на человека и, в первую очередь, влияний радиоактивных излучений. Радиоактивное излучение опасно для людей, в больших дозах оно может вызвать заболевание и даже смерть.

Воздействие радиоактивного излучения на живые ор­ганизмы в настоящее время достаточно хорошо изучено (табл. 2.3). Исследованиями установлено, что последст­вия ионизирующего излучения мощными дозами в тече­ние относительно короткого времени более ощутимы, чем при «хроническом» облучении небольшими дозами в тече­ние длительного времени. Ионизирующее облучение че­ловека оказывает соматическое (от греческого слова, означающего «тело») и генетическое действия. Длитель­ное хроническое облучение может повысить статистиче­скую вероятность заболевания раком и другими болез­нями.

Действию ионизирующего излучения, так называемого естественного радиационного фона, подвергается каж­дый живой организм в течение жизни. Источники, созда­ющие естественный радиационный фон, разделяются на внешние и внутренние. Внешние — это источники, нахо­дящиеся вне человека, а внутренние — это источники, за­ключенные в нем самом. Общая доза радиации, получа­емая человеком за год от естественного радиационного фона, составляет около 100 мбэр (1 мЗв). Кроме воздей­ствия радиационного фона люди подвергаются действию

радиации от искусствеинных источников, интенсивность которых возрастает. Максимальная доза радиации, ко­торую человеческий организм может безболезненно вы­держать, точно не установлена.

Следует учесть, что мбэр — это единица излучения, которая оказывает на человека такое же биологическое действие, как облучение в 1 рентген. При этом под рент-

Т а б л и ц а 2.3

Источники облучения

Ежегодные до­зы облучения, мкДж/год

От космических лучей и естественной радиоак­

7—20

тивности в человеческом теле, горных породах,

почве, воздухе (в среднем)

То же, для жителей вулканических районов

160

Бразилии

Дополнительное среднее облучение внутри ка­

5—15

менного дома, вызванное естественной радиоак­

тивностью материалов

В результате рентгеноскопии

7,5—10

Дополнительное облучение от различных источ­

0,2

ников (космические лучи во время полетов на

реактивных лайнерах, светящиеся циферблаты

часов, цветные телевизоры и т. д.)

От радиоактивных отходов атомных электро­

Менее 0,0001

станций (на 1970 г.)

От радиоактивных отходов АЭС для лиц, про­

0,5

живающих непосредственно вблизи станций (на

1970 г.)

геном понимается единица экспозиционной дозы рентге­новского излучения. Один рентген (2,58 • 10”-4 Кл/кг) — это такая доза рентгеновского излучения или гамма-из­лучения, при которой в 1 г воздуха поглощается энергия, равная 87,7 эрг; в 1 мл мягких тканей человека —

96 эрг. Если от радия массой 1 г на расстоянии 1 м по­местить 1 г воды или 1 г мягкой ткани человека, то за 1 ч вода и ткани получат дозу около 1 Р. При медицин­ском рентгеновском обследовании часть тела человека получает дозу 0,15 Р, а при лечении рентгеновскими лу­чами (рентгенотерапия) тело человека получает дозу от 1 до ЮР.

Исследования биологического воздействия радиоак­тивного излучения показали, что знание абсолютного ко­личества поглощаемой веществом энергии недостаточно для того, чтобы объяснить наблюдаемые биологические

J

изменения. При этом большое значение имеет плотность ионизации, т. е. количество ионов, возникающих при об­лучении в единице объема вещества. Поэтому для изме­рения радиоактивных излучений ввели коэффициент, на­званный относительной биологической эффективностью данного вида излучения, и понятие дозы, эквивалентной с точки зрения биологического воздействия.

Получая ежегодную дозу естественного фона 100 мбэр, человек, не связанный с источниками излуче­ния профессионально, получает к 70 годам дозу пример­но 7 бэр, однако за последние годы эта доза у всего на­селения повысилась за счет искусственных источников в среднем на 30—40%.

Это объясняется увеличением суммарной экспозици­онной дозы в связи с широким использованием излуча­ющих промышленных изделий, например телевизоров, а также с периодическими обследованиями с помощью рентгеноскопии.

Доза естественного облучения в разных местах пла­неты и разных городах различна. Например, в Лондоне эта доза составляет 67 мбэр/год, а в Абердине —

  1. мбэр/год. Еще больше различаются дополнительные дозы за счет естественных строительных материалов: в кирпичных домах — 30 мбэр/год, в домах, сооруженных из гранита,— 150 мбэр/год. В некоторых районах земли поверхностные слои почвы содержат до 10% фтора. Так, в Индии из-за этого, в штате Керала уровни облучения достигают 2000 мбэр/год. Важнейшим источником есте­ственного внутреннего облучения являются радиоактив­ные элементы, входящие в состав мышц человеческого тела. Доза облучения, обусловленная этим фактором, составляет около 20 мбэр/год. Сэр Джон Хилл, глава английской программы ядерной энергетики, в своей лек­ции отметил, что супруги, предпочитающие спать вместе, получают за счет внешнего облучения, исходящего от партнера, дополнительную дозу 1 мбэр/год*.

В результате поглощения в атмосфере космическое излучение достигает поверхности земли сильно ослаб­ленным, обусловленная им доза облучения составляет на уровне моря около 28 мбэр/год. На больших высотах экранирующий эффект атмосферы снижается и, напри­мер, в Мексике (2500 м над уровнем моря) космическое излучение примерно вдвое больше, чем на уровне моря.

При многочасовом полете на авиалайнере дополнитель­ная доза составляет примерно 3 мбэр за время полета *.

Предполагается, что когда мощность АЭС в нашей стране достигнет 200 млн. кВт, дополнительная доза об­лучения населения составит менее 0,01% от облучения за счет естественной радиации. Такая небольшая доза облучения даже полезна, так как человек всегда жил и развивался в условиях радиации.

Для того чтобы АЭС не вызывали слишком больших излучений, необходимо выполнять требования безопас­ности. Понятие безопасности включает в себя несколько аспектов: 1) безопасность обслуживающего персонала;

  1. отсутствие распространения радиоактивности в атмо­сферу и воду; 3) обеспечение безаварийной работы ре­акторов станций; 4) переработка и хранение радиоактив­ных отходов. Для выполнения требований безопасности прежде всего необходимо произвести надлежащий выбор места строительства АЭС. Так, согласно последним ре­шениям, их нельзя размещать ближе чем на 180—200 км от крупных городов. На определенном расстоянии от станции должна проходить санитарно-защитная зона, запрещенная для проживания, район строительства дол­жен быть безопасен в сейсмическом отношении. Главное здание станции в соответствии с требованиями безопас­ности разделяется на зоны строгого и свободного режи­ма. В зоне строгого режима на обслуживающий персо­нал могут воздействовать зараженные воздух и поверх­ности технологического оборудования и приборов. Зона строгого режима, в свою очередь, разделяется на помеще­ния, где персонал может присутствовать постоянно, и по­мещения, куда во время работы реактора вход строго вос­прещен. В зоне свободного режима радиации нет. Обе зоны изолированы одна от другой и попасть в зону строгого режима можно только через санитарный отсек. Создание таких зон направлено на то, чтобы уберечь людей от воздействия продуктов радиоактивного распада и осколков деления не только при нормальной эксплуата­ции, но и в случаях так называемых проектных аварий.

Для задержки радиоактивности, излучаемой при ра­боте реактора, устанавливается несколько защитных барьеров:

кристаллическая решетка топлива, которой поглоща­ются радиоактивные продукты деления и превращения тяжелых ядер;

металлическая оболочка тепловыделяющих элемен­тов (твэлов);

корпус реактора и система циркуляции теплоносите­ля (первого контура);

железобетонные или металлические защитные обо­лочки, предотвращающие распространение радиоактив­ности при нарушении прочности корпуса реактора или контура с теплоносителем.

Построенные и строящиеся АЭС с водо-водяными ре­акторами мощностью 1000 МВт снабжаются защитными оболочками. Здесь предусматривается кольцевой бак биологической защиты и газгольдер с высокой трубой, через которую выбрасывается воздух из помещений. Высота трубы рассчитана так, что радиоактивные ядра успевают частично распасться, прежде чем достигнут по­верхности земли (при нормальной работе станции в ат­мосферу попадает лишь небольшое количество газооб­разных и летучих элементов типа криптона, ксенона, иода). На АЭС протекает самоподдерживающаяся цеп­ная реакция деления ядер тяжелых элементов. При этом масса ядерного топлива должна быть не менее некото­рого определенного значения, но топливо «выгорает» и коэффициент размножения делящихся нейтронов посте­пенно (хотя и медленно) уменьшается. Для компенсации этого эффекта в реактор загружают несколько больше топлива, чем это необходимо. Безопасность работы при этом обеспечивают подвижные компенсирующие стерж­ни, поглощающие нейтроны деления. Однако если по ошибке стержни окажутся поднятыми, начнется неуп­равляемый «разгон мощности». Тогда начинает действо­вать аварийная защита, включающая сначала сигнализа­цию, а затем мгновенно вводящая в активную зону до­полнительные аварийные стержни *. Чтобы исключить самопроизвольный пуск реактора, в систему первого кон­тура вводится борная кислота, активно поглощающая нейтроны.

Максимальная проектная авария предусматривает мгновенный разрыв главного трубопровода первого кон­тура. Давление в контуре теплоносителя резко умень­шится и мгновенно закипит вода, которая в эксплуата-

ционных условиях нагрета до 300°С. Аварийная защита, вступив в действие, понизит мощность реактора, но тепло­та в активной зоне будет по-прежнему выделяться и если ее не отводить (из-за разрушения системы охлаждения), то могут расплавиться оболочки твэлов.

Хотя теоретически аварии на АЭС маловероятны, тем не менее за период с 1971 по 1985 г. в 14 странах мира случалась 151 авария разной степени сложности и с раз­ными, в том числе с тяжелыми, исходами для людей и окружающей среды.

Авария 26 апреля 1986 г. на четвертом блоке Черно­быльской АЭС в СССР привела к тяжелым последстви­ям 1. В результате аварии погибли 28 человек и нанесен ущерб здоровью многих людей. Разрушение РБМК (ре­актора большой мощности канального типа) привело к радиоактивному загрязнению территории около 1 тыс. км2. Выведены из строя сельскохозяйственные угодья, остановлена работа предприятий, а из 30-кило- метровой зоны от центра аварии выселено несколько де­сятков тысяч человек. Авария на Чернобыльской АЭС произошла из-за ряда допущенных работниками этой станции грубых нарушений правил эксплуатации реак­торной установки. Вследствие несоблюдения персоналом технологического регламента эксплуатации реактор по­пал в опасное нерасчетное состояние.

По плану реактор нужно было вывести в ремонт, и перед его остановкой администрация решила провести испытание турбогенератора в режиме совместного выбе­га с нагрузкой собственных нужд. Однако руководители станции не подготовились к эксперименту должным об­разом, не обеспечили должный контроль и надлежащих требований безопасности.

Авария на Чернобыльской АЭС показала необходи­мость конкретных мер по усилению безопасности атом­ный станций, действующих и строящихся на территории СССР. Здесь прежде всего необходимо дальнейшее по­вышение технологической надежности в период эксплуа­тации, своевременный демонтаж и консервация станций по исчерпании ими ресурса основного оборудования (средний срок службы АЭС примерно 30 лет), изыскание более совершенных способов захоронения, складирова­ния и применения радиоактивных отходов.

Как отмечал М. С. Горбачев, «для нас непререкаемый урок Чернобыля состоит в том, что в условиях дальней­шего развертывания научно-технической революции во­просы надежности техники, ее безопасности, вопросы дис­циплины, порядка и организованности приобретают пер­востепенное значение. Нужны самые строгие требования везде и во всем» 1.

В связи с чернобыльской аварией, которая хотя и яв­ляется очень крупной и тяжелой, но отнюдь не приоста­навливающей дальнейшее развитие атомной энергетики в СССР, разрабатывается ряд международных мер для предотвращения аварий и уменьшения их возможных последствий. К таким мерам относится разработка меха­низмов для своевременного оповещения о выбросах ра­диоактивных элементов за пределы национальной терри­тории, получение информации об уровне радиоактивности в странах, возможных дополнительных технических ме­рах на ядерных установках.